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The frequency and severity of atopic disorders are steadily
increasing, particularly in developing countries. The reason for
this observation is not clear. Recent studies indicate that
infections with viruses and especially with bacteria early in life
may help to inhibit allergic Th2 responses by skewing the
immune system towards Th1 responses. However, infections
can also lead to the exacerbation of atopic disorders. 
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Abbreviations
APC antigen-presenting cell
DC dendritic cell
LPS lipopolysaccharide
MBP major basic protein
OVA ovalbumin
RSV respiratory syncytial virus
RV rhinovirus
SA superantigen

Introduction
It is well established that genetic and environmental
factors contribute to the onset and maintenance of allergic
diseases such as bronchial asthma and atopic dermatitis.
Since the natural mutation rate is low, altered environmen-
tal/ lifestyle conditions are thought to be responsible for
the increasing prevalence and incidence of allergic dis-
eases. Epidemiological and clinical studies have provided
compelling evidence that suggests a link between the
relative lack of infectious diseases and the increase in aller-
gic disorders (reviewed in [1]); this is referred to as the
‘hygiene hypothesis’. According to this theory, viral and
bacterial infections prevent the induction of allergen-
specific Th2 cells because they establish Th1-biased
immunity. In particular, the prenatal period and early
childhood are considered to be critical intervals for the
establishment of the Th1/Th2 balance. On the other hand,
several studies have suggested that viral/bacterial infec-
tions exacerbate allergic diseases, for example bronchial
asthma, airway hyper-responsiveness and atopic dermati-
tis. Therefore, viral/microbial infections and/or their
products may have bidirectional effects on the develop-
ment of allergy and asthma. 

This review will focus on recent findings relating to the
interaction between allergic disorders and infectious
diseases, with the main emphasis on viral and bacterial
infections. At various points of this review, the reader will
be referred to more detailed reviews on previous advances
in the field and specific areas of immunological research
that we touch upon. 

The influence of viral infections on the
development and severity of allergic disorders
Do viral infections inhibit the development of atopic
disorders?
The immune response induced by viral infections is
generally characterized by the activation of NK cells and
CD8+ and CD4+ T cells secreting IFN-γ via MHC-class-I-
and class-II-restricted antigen presentation by professional
antigen-presenting cells (APCs). Since IFN-γ has the
potential to inhibit the development of Th2 responses, it
is plausible that viral infections early in childhood could
lead to a decrease in the atopic phenotype later in life.

Up to now very few data supporting this hypothesis have
been published. Studies on the effects of measles vaccina-
tion on children in Guinea-Bissau have shown that
children who were not vaccinated against measles were
significantly less likely to develop allergic disorders than
their counterparts who had been vaccinated [2]. One of the
interpretations provided by this study was that infection
with the measles virus might be protective against atopy.
However, a recent report by Paunio et al. [3] found that
children who had been infected with measles (but had
cleared the infection) also had a higher frequency of atopy
in comparison with children who did not have a measles
infection (these children had been vaccinated and
exposed). Furthermore, Imani et al. [4] demonstrated that
a human B cell tumor line treated with IL-4 and infected
with measles virus exhibited an increase in IgE class-
switching in comparison with control cells treated only
with IL-4. This suggests a mechanism by which measles
virus may increase the production of IgE during measles
virus infection in humans. 

Other viruses whose presence has been negatively correlat-
ed with the prevalence of atopy are hepatitis A virus and
adenovirus. Matricardi et al. [5] showed that military stu-
dents in Italy who had a positive titre of anti-hepatitis-A
antibodies showed fewer signs of allergic manifestations as
compared with hepatitis-A-negative students. This suggests
that hepatitis A virus infection somehow protected from the
development of atopy. However, the majority of vaccine
adjuvants in use today are known to induce a Th2-type
response by increasing the production of Th2-type
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cytokines and IgE antibodies [6–8] thereby potentially
elevating the predisposition towards atopy in vaccinated
persons, compared with infected persons. The observation
of Stampfli et al. [9], that an intramuscular infection of mice
with a replication-deficient adenovirus inhibited allergic

airway-inflammation, supports the idea that viral infections
may under certain conditions reduce an allergic phenotype.
This view is supported by the demonstration that influenza
A virus infection decreased the development of airway
eosinophilia after airway challenge with allergen (K Erb,
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The possible influence of viral infections on the development of atopic
disorders. (a) Genetic factors and environmental allergens determine
whether allergen-specific Th2 cells are generated, leading to the
development of atopy. Virus infection may have a variety of effects and,
for simplicity, these are shown emanating from the right, lower centre
and left of the figure. (b) IL-1-β produced by macrophages (MØs) after
infection by RV leads to increased airway smooth-muscle contraction,
resulting in increased airway reactivity. (c) Infections with RSV or
parainfluenza directly induce Th2 responses, leading to the
exacerbation of allergic disorders. (d) IL-4 produced by allergen-
specific Th2 cells switches virus-specfic Th1 cells to a Th2 type. These
virus-specific CD8+ T cells secreting IL-5 recruit eosinophils into the
vicinity of nerve cells, where the eosinophils degranulate and release
MBP; this interacts with M2 muscarinic receptors on airway

parasympathetic nerves, inhibiting the suppression of acetylcholine
release and resulting in increased airway reactivity. (e) The secretion of
IFN-γ by Th1 cells after virus infection induces the production of
RANTES by eosinophils and airway epithelial cells, thereby increasing
the influx of eosinophils. (f) RSV and RV infections induce the
production of IL-8 by lower-airway epithelial cells, attracting neutrophils
into the airways and further increasing inflammatory responses at this
site. (g) Viral infections that induce strong Th1 responses inhibit the
development of allergen-specific Th2 cells through the production of
IFN-γ (by Th1 or NK cells), IL-12 (by MØs or DCs) and IL-18 (by MØs
and Th1 cells) at the site of naive T cell priming. (h) The IL-4 secreted
during the allergic Th2 response deviates the normally Th1-dominated
antiviral immune response towards a Th2 response and further
exacerbates the allergic reaction.
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H Moll, unpublished data) and after respiratory syncytial
virus (RSV) infection in mice preimmunized with G-protein
from RSV (T Hussel, personal communication).

Taken together, however, caution should be taken in
arriving at the conclusion that viral infections have a pro-
tective influence against atopy. Further experimental and
epidemiological data are needed to clearly establish if, and
under which conditions, viral infections may decrease the
development of atopy both in animal models and humans.

Virus-induced exacerbation of allergic disorders 
Although there is no clear evidence suggesting that viral
infections in general may induce allergic disorders, there is
little doubt that a number of respiratory viruses can exac-
erbate the symptoms of asthma in humans. The most
common form of virally exacerbated asthma in humans is
induced by rhinovirus (RV). Furthermore, this effect has
recently been observed using influenza A virus and RSV in
experimental animal models. Suzuki et al. [10] reported
that an infection with influenza A virus leads to an increase
in airway responsiveness and allergen-specific IgE produc-
tion in aerosolized, antigen-exposed mice. An increase in
ovalbumin (OVA)-specific IgG1 antibodies, leading to ana-
phylactic shock, was also reported when OVA-induced
airway sensitization was combined with influenza A virus
or RSV infection in mice [11]. In addition, infections with
RSV were found to increase allergen-induced airway
hyper-reactivity in mice [12]. Furthermore, it was reported
that RSV infections can directly (independently from an
underlying allergic disorder) induce airway eosinophilia
and hyper-reactivity, with the effect being dependent
upon CD8+ T cells [13]. Moreover, the observation that
parainfluenza infection of guinea pigs induced airway
eosinophilia and eotaxin secretion in the lung [14] suggests
that the immune response towards viruses may have a
stronger Th2 compartment than previously suspected. 

These observations suggest that viruses, in particular RSV
infections, may generally lead to increased airway reactivi-
ty after allergen exposure. However, this effect was not
observed in guinea pigs [15]. Epidemiological studies in
humans also suggest a link between RSV infection and
asthma. Sigurs et al. [16] reported that RSV infections in
the first year of life might be a risk factor for the develop-
ment of asthma later in life. However, a recent longitudinal
study on children infected with RSV in early life suggests
that RSV infection in the lower airways does not induce
atopic asthma, since nearly all wheezing episodes appear to
resolve by the age of 13 [17•]. This finding suggests that,
although RSV infections can lead to asthma-like symptoms,
they may not actually lead to asthma in the long run. 

The potential mechanisms by which respiratory viruses
may exacerbate allergic symptoms are not precisely under-
stood at present and many hypotheses have been proposed
in an attempt to address the observed phenomenon. For
example, it is well established that the presence of IL-4

during T cell activation leads to the generation of
Th2-type CD4+ and CD8+ cells. It is conceivable that the
IL-4 produced during the allergic response may switch the
normally predominantly Th1-biased T cell response
against the virus towards a Th2-biased response. Virus-
specific CD4+ and CD8+ cells secreting IL-4 and IL-5 may
then exacerbate asthma by recruiting more eosinophils
into the lung and/or inducing the production of virus-spe-
cific IgE antibodies, resulting in mast cell degranulation.

It has previously been reported that allergen-mediated
sensitization leads to a switch of CD8+ T cells from a Th1
to a Th2 type, leading to airway eosinophilia [18]. This
finding was confirmed by a recent report from Adamko
et al. [19••] demonstrating that parainfluenza virus infec-
tion of OVA-sensitized guinea pigs induced IL-4 and IL-5
production. The authors also proposed a model of how
eosinophils could be responsible for viral exacerbation of
airway hyper-responsiveness, by showing direct interaction
of eosinophil-granule-derived major basic protein (MBP)
with prejunctional M2 muscarinic receptors expressed on
airway parasympathetic nerves. These receptors function
by binding newly released acetylcholine to suppress fur-
ther release of this neurotransmitter as a part of a negative
feedback loop. The virus-induced production of IL-5
appeared to evoke the recruitment of eosinophils to the
airways of OVA-sensitized animals in intimate association
with nerve endings (not seen in nonsensitized mice),
where they presumably degranulate (Figure 1d).
Eosinophil-derived MPB apparently downregulated M2
receptor function, since the intraperitoneal administration
of an anti-MBP antibody partially reversed vagally induced
bronchoconstriction in virus-infected, OVA-sensitized
animals [19••]. In effect, airway nerves continue to be acti-
vated in the presence of degranulating eosinophils, leading
to enhanced airway responsiveness.

Earlier studies have already indicated a role for eosinophils
and their granule products in airway hyper-responsiveness
by blockade of the M2 receptor (reviewed in [20]). Taken
together, evidence suggests that eosinophils appear to be
important for establishing virally induced airway hyper-
responsiveness, providing a potentially very concise model
of bronchial hyper-reactivity in virally infected asthmatics. 

It is self-evident that viral infections that induce Th2
responses should lead to the exacerbation of atopic disor-
ders. However, wheezing is often associated with viruses
that do not induce Th2 responses. One possibility is that
the inflammatory Th1 response in the lung that occurs
through the induction of proinflammatory cytokines and
chemokines may simply exacerbate the allergic disorder by
increasing an influx of inflammatory cells into the airways.
In support of this view are the findings that children with
virus-induced asthma were found to exhibit an increase in
IFN-γ in respiratory secretions [21] and that RV induces an
IL-1-β-dependent increase in airway smooth-muscle con-
traction in vitro [22] (Figure 1b). Interestingly, IFN-γ has



been shown to increase the secretion of the chemokine,
RANTES, from eosinophils [23•] and, in combination with
RSV, from eosinophils and bronchial epithelial cells [24].
Since RANTES is associated with increased Th2 cell
influx and eosinophilia [25], it is possible that viral infec-
tions that induce Th1 responses can exacerbate asthma
locally by indirectly increasing the amounts of RANTES
produced in the lung (Figure 1e). The observation that
RANTES levels were elevated in respiratory secretions of
children during episodes of virus-induced asthma (and not
during the asymptomatic period) supports this view [26].

However, IFN-γ may not always be a necessary component
for virus-induced chemokine release by eosinophils, since
RVs have been shown to bind to eosinophils via ICAM-1,
possibly directly activating the eosinophils [27]. A further
cytokine that may be important in mediating virus-
induced exacerbation of asthma is IL-8, a powerful
proinflammatory chemokine that is chemotactic for neu-
trophils. It was reported that both RV [28] and RSV [29]
could induce the production of IL-8 by lower-airway
epithelial cells in vitro. Patients infected with RSV also
showed an increase in IL-8 in lower-airway secretions [29].
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A model of how bacterial infections may influence the development of
atopic disorders. (a) Genetic factors and environmental allergens
determine whether allergen-specific Th2 cells are generated, leading
to the development of atopy. Bacterial infection may have a variety of
effects and, for simplicity, these are shown emanating from the right,
lower centre and left of the figure. (b) Bacterial infection may lead to
the production of SAs and LPS. SAs can act as conventional
allergens, leading to the exacerbation of the allergic phenotype by
SA-specific IgE mediating mast cell degranulation. LPS directly
augments already established IgE responses, thereby exacerbating
allergic disease. (c) SAs can also directly interact with the TCR,
triggering profound T cell activation. The activation of Th2 cells directly

increases allergic responses whereas the stimulation of Th1 cells
contributes to chronic, severe atopic disease. (d) LPS induces the
development of DCs that preferentially induce the development of
Th1 cells and lead to the suppression of atopic disease.
(e) Macrophages (MØs) that are activated by LPS (via CD14)
secrete IL-12, possibly contributing to the inhibition of allergen-specific
Th2 cell development. (f) Bacterial DNA with CpG-containing
oligonucleotides activates NK cells, resulting in the production of IFN-γ
and leading to a suppression of allergic Th2 responses. (g) Bacterial
infections that induce strong Th1 responses directly inhibit the
development of allergen-specific Th2 cells through the production of
IFN-γ, IL-12 and IL-18 at the site of naive T cell priming.



This implies that both RV and RSV infections could exac-
erbate asthma through the recruitment of neutrophils into
the site of allergic inflammation (Figure 1f). 

Taken together, it is clear that almost all respiratory viral
infections could potentially exacerbate asthma both in
experimental animal models and humans. However, none
of these viruses appears to induce atopic disease. In addi-
tion, there does not seem to be a common mechanism
responsible for enhancement of allergic symptoms. Rather,
it seems that many different mechanisms could operate at
the same time and potentiate one another. These include
an indirect effect on the T cell phenotype — for example
by immune deviation causing a switch from Th1 to Th2
responses in the lung — or a direct effect by the virus,
inducing a Th2 response where none existed before.
Importantly, a Th1 response induced by respiratory viruses
may also facilitate Th2-mediated inflammation by increas-
ing the production of proallergic chemokines, such as
RANTES, by eosinophils or epithelial cells. Lastly, viral
infections may cause wheezing without an underlying aller-
gic phenotype by directly causing M2 muscarinic
dysfunction on vagal nerve endings, leading to bronchocon-
striction. Figure 1 shows a model of how viral infections
may influence allergic disorders.

The influence of bacterial infections and
antigens on the development and
exacerbation of atopic disorders
Do bacterial infections inhibit the development of
atopic disorders?
Similar to viral infections, most bacterial infections — in
particular obligate intracellular pathogens — induce pro-
found Th1 responses, with high levels of IFN-γ secreted
predominantly by CD4+ T cells and usually not by CD8+

T cells. However, in contrast to viral infections, there are
many studies suggesting that bacterial infections and/or
bacterial products can inhibit the development of allergic
disorders. For example, Shirakawa et al. [30] reported that
a positive tuberculin test result, suggestive of past infec-
tion with Mycobacterium tuberculosis, was inversely related to
the subsequent development of atopy and asthma.

An alternative explanation is that atopic children (Th2
responders) have difficulties in mounting an appropriate
and sufficient Th1 response following vaccination. This
would explain the lower frequency of positive tuberculin
responses in atopic children compared with non-atopics.
Recently it was reported that BCG vaccination given early
in infancy may prevent the development of atopy in
African children [31]. However, several authors showed
that vaccination with BCG per se does not prevent the
development of allergy and asthma [32,33]. A negative
tuberculin response in vaccinated infants is therefore sug-
gestive of a failure to develop appropriate Th1 immunity.
In line with this explanation is the observation by
Prescott et al. [34], that total IgE levels correlate inversely
with positive skin-test responses to tetanus and diphtheria

toxin in vaccinated infants, again suggesting that a high
Th2 propensity prevents appropriate Th1 immunity.

Recently, however, Von Mutius et al. [35] reported a signif-
icant inverse correlation between the prevalence of asthma
and reported rates of tuberculosis. The observation that an
infection in the lung with live BCG prevented allergen-
induced airway eosinophilia and the development of
airway hyper-reactivity in mice [36,37] further supports the
idea that mycobacterial infections prevent the develop-
ment of atopy. How can mycobacterial infections mediate
this effect? A recent report showed that — in wild-type
mice but not IFN-γ-receptor-deficient mice — airway
eosinophilia induced by allergen-specific Th2 clones could
be suppressed by allergen-specific Th1 clones, which were
simultaneously transferred [38••]. This suggests that
IFN-γ secreted by Th1 cells leads to a reduction in airway
eosinophilia. This could also be the case during mycobac-
terial infections, which are known to induce a profound
Th1-type immunity. However, the exact mechanism of
how IFN-γ mediates this effect is not clear. 

Interestingly, it appears that bacteria do not have to be alive
to prevent allergic responses, since killed Listeria monocyto-
genes, M. vaccae or Lactobacillus plantarum could also
suppress allergic responses in mice [39–41]. Furthermore,
oligonucleotide motifs that contain CpG (these are found in
the DNA of many different types of bacteria but not in
eukaryotic organisms) have been found to be potent stimu-
lators of IL-12 and IFN-γ production, perhaps leading to a
strong inhibition of allergic airway inflammation (reviewed
in [42]). This suggests that the exposure to bacterial DNA
in general could lead to enhanced suppression of atopy.
However, it is not clear whether DNA containing CpG-
oligonucleotides is released in sufficiently stimulatory
amounts during infection to have this effect.

Taken together, there is strong evidence suggesting that
bacterial infections can prevent the development of allergy
in animals. The exact mechanism(s) of how this is achieved
is still not understood, except that it may involve IL-12
and/or IFN-γ. In humans, it is unclear if, and which, bacte-
rial infections could lead to decreased atopy. However, the
finding of Wickens et al. [43], that the use of antibiotics dur-
ing infancy correlates with an increased risk of developing
asthma, suggests that bacterial infections early in life may
help to inhibit the development of asthma. However, due
to the correlative nature of this study, more human studies
are needed before reaching the conclusion that decreasing
antibiotic treatment leads to a reduced risk for atopy later in
life. Figure 2 shows a model of how bacterial infections
might influence the development of allergic disorders.

Exposure to lipopolysaccharide and the development
of atopy
Most recently, several authors reported that growing up on
farms and being exposed to livestock confers significant
protection against the development of atopy [44,45]. A
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potential candidate, among others, in mediating this pro-
tection is the exposure to bacterial endotoxins, such as
lipopolysaccharide (LPS), on farms. Supporting this
hypothesis is the finding that there is an inverse correlation
between concentrations of house-dust endotoxin and aller-
gen sensitization, since skin-test-negative children were
exposed to significantly more house-dust endotoxin [46•]. 

One mechanism by which LPS may trigger Th1-type
immunity is via binding to the LPS receptor, CD14, which
is expressed by APCs, particularly monocytes. Binding of
LPS to CD14 results in marked stimulation of IL-12
production, which seems to be one of the most important
inducers of Th1 responses (Figure 2e). It is of interest that
a polymorphism in the 5′-flanking region of the CD14
gene has been associated with the increased intensity of
atopy [47•]. More recently, a study showed a correlation
between concentrations of house-dust endotoxin and the
frequency of IFN-γ-secreting T cells in the blood [46•]. 

These findings indicate that exposure to LPS may be of
great biological relevance in generating appropriate Th1
immunity to environmental allergens. Furthermore,
Stumbles et al. [48] reported that the resident dendritic cell
(DC) population of the respiratory tract of rats preferentially
induces the development of Th2 cells [48]. In the presence
of GM-CSF or TNF-α, the DCs induced a response that
was skewed towards the development of a Th1 response.
Since LPS leads to the secretion of TNF-α by macrophages,
it may be possible that LPS exposure leads to increased Th1
responses against inhaled allergens by altering the stimula-
tory quality of the mucosal DCs from Th2-type towards
Th1-type (Figure 2d). However, exposure to LPS was
shown to have bi-directional effects in animal models: LPS
given after allergen-sensitization increased IgE production
and airway inflammation [49–51]; in contrast, exposure to
LPS after airway allergen-challenge abolished airway inflam-
mation and bronchoconstriction [51,52].

Taken together, there is circumstantial evidence suggesting
a role for LPS in the development of allergic disorders.
However, the underlying molecular and cellular mecha-
nisms are still unknown. The source and route of exposure
to LPS may also be important, since LPS is produced by
several bacterial pathogens (e.g. Haemophilus and
Salmonella) and commensals colonizing the gut (e.g.
Escherichia coli). Interestingly, Björksten et al. [53] found that
the colonization of the gastrointestinal tract from new-born
babies who had lactobacillus and eubacteria (compared with
those who had Clostridium difficile) correlated with a decrease
in atopic disorders later in life. This suggests that commen-
sal gut bacteria may play an important, as-yet unrecognized
role in predisposing children towards the atopic phenotype.

Influence of superantigens derived from
Staphylococcus aureus on the development of atopy
The prominent role of skin colonization with S. aureus as a
factor contributing to the exacerbation of atopic dermatitis

has been well established. Unlike conventional antigens,
toxins from S. aureus stimulate T cells in their native state
via direct binding and stimulation of TCR Vβ elements.
Depending on the TCR repertoire, up to 25% of T cells
were shown to be responsive to such superantigens (SAs),
leading to vigorous T cell activation and cytokine release.
Moreover, S.-aureus-derived toxins can function not only as
SAs but also as conventional allergens (Figure 2b). Several
studies promote the concept that SAs have disease-pro-
moting effects. Specific IgE antibodies directed against
staphylococcal enterotoxin A or B were detectable in a sub-
group of atopic dermatitis patients. The presence of these
SA-specific IgE antibodies strongly correlates with disease
severity and IgE levels [54]. Furthermore, a preferential
accumulation of SA-responsive T cells was observed in
patients with intense skin inflammation [55]. Additional
evidence for a disease-modulating effect of SAs has been
provided by a study performed by Strickland et al. [56].
They showed that, in vitro, SAs have the capacity to acti-
vate and expand T cells expressing specific TCR Vβ gene
segments and also to increase their skin-homing capacity
via upregulation of the skin-homing receptor, cutaneous
lymphocyte-associated antigen (CLA) in vitro [56].
Moreover, SA-induced T cell activation also seems to be
involved in dermatitis. Skov et al. [57•] showed that the
application of staphylococcal enterotoxin B on normal and
atopic skin induced an influx of T cells into the skin, lead-
ing to the induction of dermatitis.

Other pathogens possibly influencing the
development of atopic disorders
Other types of pathogens possibly having an effect on the
development of allergic disorders include infections
caused by fungi or parasites. Although it is well established
that humans directly develop allergies against fungal anti-
gens (for example, spores from Aspergillus species) or after
infection with cryptococci, there is little evidence suggest-
ing that fungal diseases have any major influence on the
development of atopy. However, it was reported that the
colonization with Candida albicans is associated with severe
eczema [58]. 

A further group of pathogens that could have an impact on
allergic responses in humans are protozoans. Although
these pathogens induce profound immune responses (in
particular, plasmodia, leishmania and trypanosomes), no
clear data are available on the role of protozoans in the
etiology of atopy. 

In contrast to fungal or protozoan infections, there is some
evidence suggesting that helminthic infections may influ-
ence the development of atopic disorders. In contrast to
most other type of infections, helminths almost exclusive-
ly induce Th2-type responses. Therefore, worm infections
would be expected to promote atopy through the induc-
tion of IL-4 expression, leading to increased development
of allergen-specific Th2 cells. Furthermore, the increase in
total eosinophil numbers and induction of mastocytosis
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observed after worm infections may directly increase
allergic-type inflammation. The mechanical irritation at
sites of allergic inflammation during worm migration may
also increase the atopic phenotype by generally increasing
inflammatory responses at these sites.

Supporting this view are the findings that infections with
Nippostrongylus brasiliensis [59] and Brugia malayi [60]
induce airway hyper-responsiveness in mice. Furthermore,
anti-helminthic treatment of individuals living in regions
with a high prevalence of worm infections also resulted in
the improvement of asthma [61]. Allergic manifestations
also seem to occur more often in children who are seropos-
itive for Toxocara or Ascaris than in seronegative children
[62,63]. These reports suggest that helminth infections
generally lead to the exacerbation of atopic disorders and it
would be expected that countries with a high prevalence of
helmith infections would also have a high atopy rate.
Interestingly, the opposite is true. The basis for this obser-
vation is not clear but it has been suggested that, although
helminths may actually increase Th2 responses towards
allergens, they may also inhibit atopic effector functions by
inducing the production of polyclonal IgE. High amounts
of IgE could saturate the Fcε receptors on mast cells and
thus competitively inhibit binding of allergen-specific IgE.
In this way the helminth infection would suppress allergen-
mediated mast-cell degranulation and the development of
atopic disorders. However, it has also been suggested that
the development of Th2 responses directed against envi-
ronmental antigens may simply reflect a default mechanism
in the absence of infection because a highly efficient and
conserved response is no longer being used by the immune
system [64•]. 

Conclusions
It is clear that infections can, under certain conditions, influ-
ence the onset, maintenance and exacerbation of allergic
diseases both in animal models and humans. However,
there is no one, clear-cut effect. Rather, several mechanistic
pathways may work independently of each other or have
additive and/or synergistic effects that result in the inhibi-
tion or exacerbation of atopy, depending on the infectious
agent and the time-point of the infection. If the infection
occurs before or during allergen sensitization, it is likely that
this will lead to the reduction of the emerging atopic phe-
notype. On the other hand, if the infection takes place after
the development of an established allergic Th2 response,
the allergy will be exacerbated. This is probably generally
true for both viral and bacterial infections. However, there
seems to be an association between viral/bacterial infections
and the exacerbation/reduction of atopy, respectively. The
reason for this observation is not clear but may simply be
due to the qualitative differences between the immune
responses against viruses and bacteria.

A further factor that is believed to be important in the eti-
ology and evolution of atopic disorders is infection with
helminths. Although it is plausible that the Th2 responses

initiated against helminths can exacerbate atopy, or alter-
natively suppress allergic effector functions, there is no
clear evidence suggesting a positive or negative role of
helminth infections on the development of allergic dis-
eases. In this context it is important to point out that the
interpretation of epidemiological studies is often very dif-
ficult because resistance or susceptibility towards
infections or atopy may either be mutually inclusive or
exclusive. However, the importance of such studies cannot
be overemphasized since they may lead to an explanation
of why atopic disorders are currently increasing at such an
alarming rate. Furthermore, more knowledge about the
underlying mechanisms responsible for infection-induced
inhibition or exacerbation of atopic disorders may lead to
novel therapeutic and prophylactic intervention strategies
that help to control allergic diseases in the future.
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