DANISH-BAVARIAN WORKSHOP ON ROBOTICS/ICT IN HORIZON 2020

Game of Drones: Challenges, opportunities in aerial robotics

AARHUS UNIVERSITY
ARTIFICIAL INTELLIGENCE IN ROBOTICS GROUP

WHO AM I?

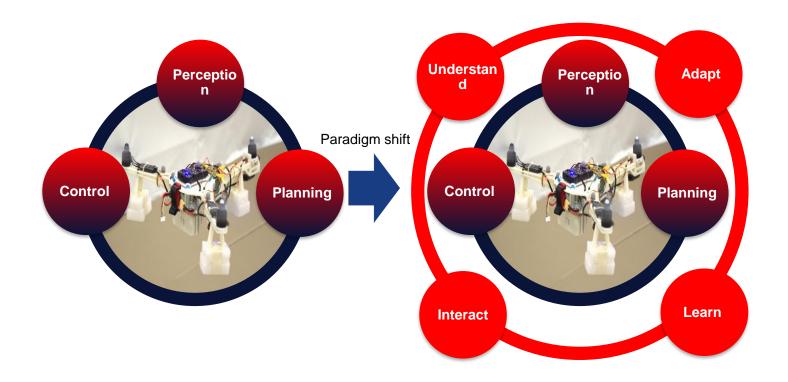
Date	Work experience				
April 2018-Current	Associate Professor (Tenured), Aarhus University Department of Engineering Director of Artificial Intelligence in Robotics (AiR) Lab				
March 2014-March 2018	Assistant Professor, Nanyang Technological University, Singapore Department of Mechanical and Aerospace Engineering				
September 2011-March 2014	Post doctoral researcher, KU Leuven, Belgium Division of Mechatronics, Biostatistics and Sensors (MeBioS)				
Date	Education				
September 2011	Ph.D. in Electrical and Electronics Engineering, Bogazici University, Istanbul				
January 2016	M.Sc. in Systems and Control Engineering, Bogazici University, Istanbul				
June 2003	B.Sc. in Electrical Engineering, Istanbul Technical University, Istanbul				

RESEARCH PROJECTS

Date	Ongoing
April 2019-Current	Visualisation of Virtual Outcrops Using Aerial Robots
	by Technical University of Denmark, Danish Hydrocarbon Research and Technology Centre

Date	Directed
March 2018 - March 2019	Learning-based path planning of unmanned aerial vehicles with vision-based sensing by Ministry of Education Academic Research Funding Tier 1
Jan 2016 - April 2018	Fuzzy neural network-based learning control of unmanned aerial vehicles by ST Eng-NTU Corporation Laboratory
Jan 2014 - April 2018	Design of lightweight UAV for 3D Printing by NRF Medium-Sized Centre
Jul 2015 - Dec 2017	Precise landing for unmanned aerial vehicles by ST Eng-NTU Corporation Laboratory
July 2015 - Jan 2017	Quality Inspection and Assessment Robot (Quicabot) by JTC Corporation - NRF Singapore
May 2014 - Mar 2017	Learning control algorithms for unmanned aerial vehicles by Nanyang Technological University (Start up grant)
Mar 2015 - Aug 2017	Model predictive control-moving horizon estimation framework as applied to tilt rotor UAVs and its experimental evaluation by Ministry of Education Academic Research Funding Tier 1

A new project: "Open Deep Learning toolkit for Robotics" project will be funded by EU under the HORIZON 2020 program!


RESEARCH AREAS

Robotics (Mostly aerial robots) Mechatronics Path/motion planning for aerial robots Machine learning Reinforcement learning Robotic vision Model predictive control

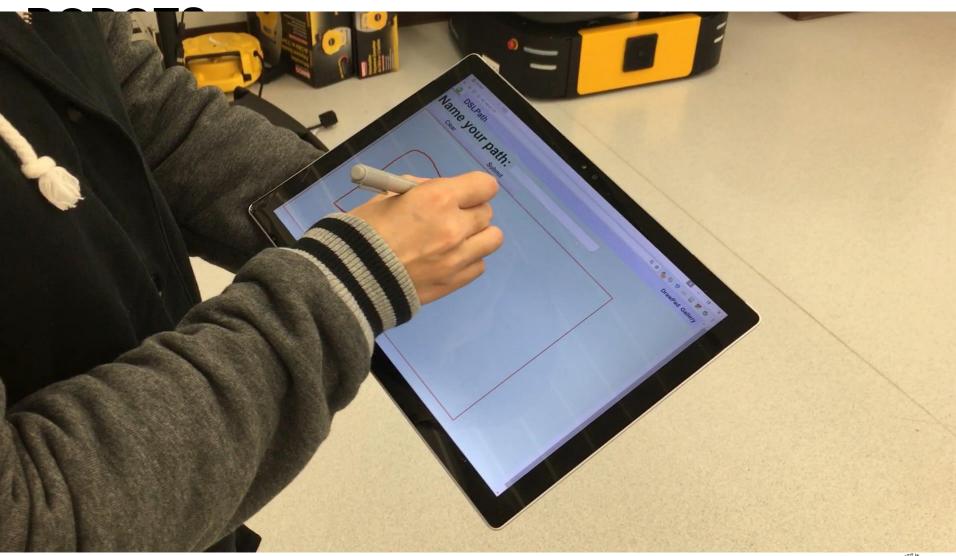
ESSENTIAL UNITS IN ROBOTS

LEARNING CONTROL USING ANNS

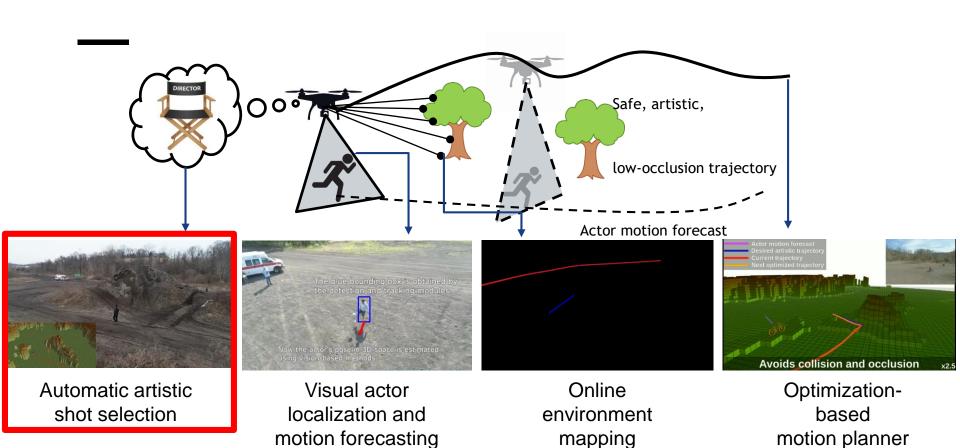
A Fast Learning Control Strategy for Unmanned Aerial Manipulators

Nursultan Imanberdiyev and Erdal Kayacan

School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore


> Department of Engineering, Aarhus University, Denmark

> > May 2018


KNOWLEDGE TRANSFER BETWEEN

WHAT MAKES FILMING HARD?

AERIAL CINEMATOGRAPHY USING DRONES

Artistic reasoning

Visual detection

Mapping

Motion planning

EVALUATING THE LEARNED **ARTISTIC BEHAVIOURS**

Table 14: Average normalized score of video clips between 0 (worst) and 10 (best).

	Average	Scene 1	Scene 2	Scene 3	Scene 4	Scene 5
Hand-crafted reward	8.2	10.0	5.3	9.3	7.7	8.7
Human reward	7.1	5.0	9.0	6.0	7.7	8.0
Back shot	3.8	4.0	4.7	4.3	4.0	2.0
Random	0.9	1.0	1.0	0.3	0.7	1.3

12

DRONE RACING

Exploiting Fast and Accurate Semi-Synthetic Image Generation for Efficient CNN training Autonomous Drone Racing

Théo Morales, Andriy Sarabakha, Erdal Kayacan

ANOMALY DETECTION USING DRONES

UAV-AdNet: Unsupervised Anomaly Detection using Deep Neural Networks for Aerial Surveillance

Ilker Bozcan and Erdal Kayacan

Department of Engineering, Aarhus University, Denmark Artificial Intelligence in Robotics Lab (AIRLab)

CHALLENGES IN DRONE TECHNOLOGY

State and parameter estimation in outdoor applications

Perception loops for autonomy

Navigation in cluttered environment

Perception action for swarms

Learning control for drones

