REACH 2020:

Responsive Engagement of the Elderly promoting Activity and Customized Healthcare

Project Overview and Outlook

Prof. H. B. Andersen, Dr.-Ing. T. Linner November 7, 2019

Contents

- 1. Who we are
- 2. REACH Responsive Engagement of the Elderly promoting Activity and Customized Healthcare
- 3. Some outcomes of REACH
- 4. Would we do it again?

Who we are

<u>Dr. Thomas Linner</u>, senior scientist and lecturer in building realization and robotics at Technical University of Munich

Coordination manager of REACH

Expertise: specialist in systems; has supervised, managed, and contributed to several major multi-partner research projects, with a focus on the development and deployment of advanced technology in the construction, smart buildings, manufacturing/workplace and health care/assistive technology sectors.

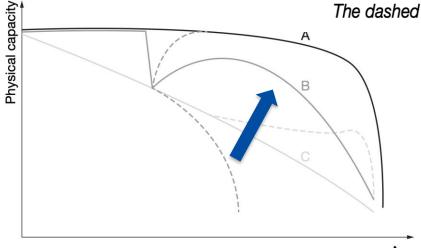
Prof. Henning Boje Andersen (prof. emeritus, senior scientist)

Leader of the Danish partner group of REACH

Expertise: Human factors, human-system interaction in safety critical domains, healthcare technology implementation and assessment.

Involved in patient safety and healthcare quality research, including legislative background for law on non-punitive reporting of "medical errors". Ethics guidelines on privacy and ambient & wearable monitoring, ...

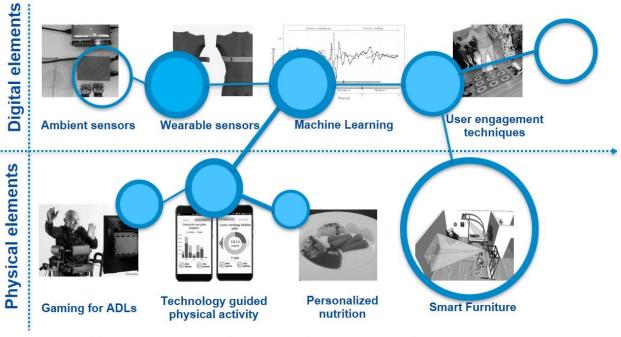
REACH RESPONSIVE ENGAGEMENT OF THE ELDERLY PROMOTING ACTIVITY AND CUSTOMIZED HEALTHCARE



REACH: an ecosystem approach

New care environments for elderly counteracting rising health expenditures

- A. Optimal trajectory, intrinsic capacity remains high until the end of life.
- B. Interrupted trajectory, an event causes a decrease in capacity with some recovery.
 - C. Declining trajectory, capacity declines steadily until death.
 The dashed lines represent alternative trajectories


REACH

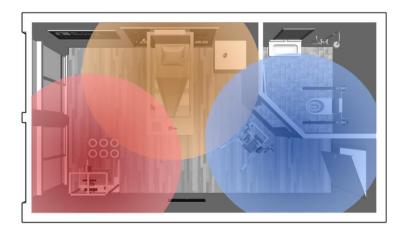
Age

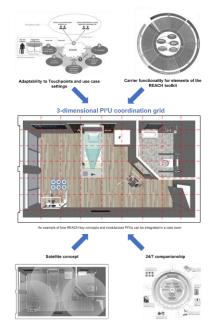
Based on WHO "World Report on Ageing and Health"

REACH Tool Kit: Techniques, Processes, Technologies + Combination Rules

Use case specific combinations within ecosystem

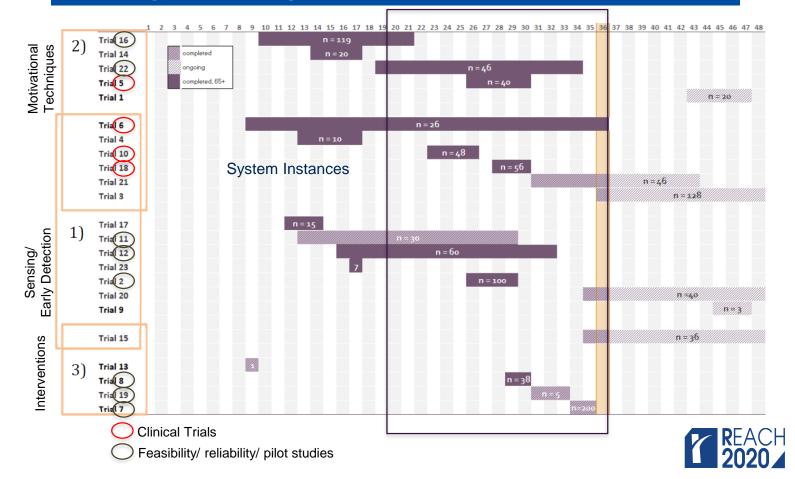
Touchpoints

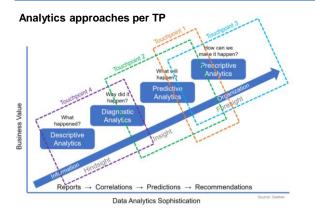

Day care center (ZuidZorg)


Sensor monitoring for surveillance and motivation (Lyngby)

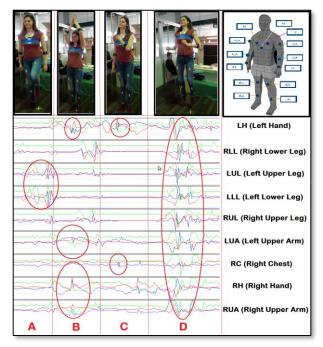
Personalised Intelligent Interior Units (PI²Us)

Pl²Us are comprised of five interacting conceptual key features


Associated Deliverables (Ds): The detailing of the overall concepts for individual PI²Us and their design is described in D22 (PI²Us: planning); Mock-ups for demonstrations and testing (e.g. in the context of the Human Activity Recognition chain): D24; aspects related to the use of PI²Us as carrier elements for ambient sensors: D8; PI²U control software: D20 (Software across TPs to embody motivational aspects); integration of playfulness and other motivational strategies in the design of PI²Us in D17 (multifunctional mobilisation/ rehabilitation system) and D19 (playful intervention regimes).


RESULTS AND OUTLOOK

Strategy with regard to trials


Sensing, data analytics, and machine learning in REACH

Analytics types used (→ Categories of Early Detection)

Integration of sensing body area network with HAR chain

Associated Deliverables (Ds): The theoretical foundations were laid in WP3/D09 (ML requirements) and then developed in detail and implemented for TPs 2 and 3, including the transfer learning techniques in WP3/D11 (Data analytics and ML across TPs); WP4/D19: experimentation with Playware tiles to supplement/replace traditional standardised performance tests; WP2/D6: Stationary and ambulant sensing schematics; WP2/D8: Data convergence and processing system.

Initial steps towards medical certification

The REACH consortium is linking up with consortiuminternal and consortium external experts in medical certification, and is at present pursuing the following steps towards a <u>medical certification plan</u>:

- 1. Clear definition of the <u>medical purposes and medical</u> <u>claims</u> for each Touchpoint
- 2. Revision and refinement of a) medical claims plus b) the with these claims associated <u>necessary</u> <u>verification/validation procedures</u> towards medical certification.
- 3. <u>Risk analysis (key to plan the clinical evaluation and certification roadmap)</u> Identification and evaluation of risks for end-users and caregivers associated with the REACH solutions in question.
- 4. <u>Identification and analysis of standards</u> (ISO, IEC, etc.) that need to me met in the context of each claim/sub-system.
- 5. <u>Final positioning</u> alignment of medical claim and assignment of the REACH solution to a specific medical

13 device class.

https://ec.europa.eu/growth/sectors/ medical-devices/getting-ready-newregulations/manufacturers-md_en

Standardization – an example: Balancing privacy and need for care

A CEN Workshop Agreement

"Guideline for introducing ambient and wearable monitoring technologies balancing privacy protection against the need for oversight and care"

- Risk Governance
- Risk Assesssment
- Risk Controls
- Risk Agreemet / Informed Consent

https://ec.europa.eu/growth/sectors/medical-devices/getting-ready-new-regulations/manufacturers-md_en

Would we do it again?

OF COURSE!

REACH2020.EU