HYDROGEN STRATEGY DRAFT PLAN FOR GREECE

Pantelis Capros

June 2022

Climate-neutrality – 1.5°C strategy

Hydrogen origins and eligibility for support

Typical H2 technology costs

	Total cost (EUR/kg H2 LHV)	
	Currently	Long-term
Hydrogen from		
natural gas steam reforming centralised - Large Scale	1.5	2.9
natural gas steam reforming small Scale	2.0	3.2
natural gas steam reforming centralized - Large Scale with CCS	2.7	4.0
electrolysis PEM- Large Scale	2.8	2.4
electrolysis PEM small-medium scale	3.4	2.9
electrolysis Alkaline - Large Scale	2.7	2.4
electrolysis Alkaline small-medium scale	3.0	2.8
high temperature electrolysis SOEC	3.6	3.0
high temperature water electrolysis SOEC small scale	4.2	3.6
H2 compression station	0.2	0.2
Hydrogen Liquefaction plant	0.4	0.3
H2 liquid to gas refuelling station	0.6	0.6
H2 refuelling station Small	0.7	0.7
H2 refuelling station Medium	0.4	0.4
H2 refuelling station Large	0.3	0.3

	SEC - Natural gas	SEC - Electricit y	Overnight investmer cost (EUR per kW- output)	
			Currently	Long-term
Hydrogen from				
natural gas steam reforming centralised - Large Scale	1.33	0.094	535	485
natural gas steam reforming small Scale	1.53	0.094	885	1554
natural gas steam reforming centralised - Large Scale with CCS	1.33	1.094	1864	835
electrolysis PEM- Large Scale		1.27	1145	475
electrolysis PEM small-medium scale		1.35	1485	630
electrolysis Alkaline - Large Scale		1.32	920	434
electrolysis Alkaline small-medium scale		1.32	1290	435
high temperature electrolysis SOEC		1.59	1358	743
high temperature water electrolysis SOEC small scale		1.62	2320	1210
H2 compression station		0.07	110	99
Hydrogen Liquefaction plant		0.02	723	582
H2 liquid to gas refuelling station		0.07	826	702
H2 refuelling station Small		0.07	966	854
H2 refuelling station Medium		0.07	503	402
H2 refuelling station Large		0.07	302	218

Greece

		Hydrogen ar	nd e-fuels bala	ance (GWh)
		2030	2040	2050
Net Imports	Hydrogen	-63	-11798	-27042
Maritime	Hvdrogen	0	118	1667
	E-fuels	892	2759	8005
Rail transport	Hydrogen	2	10	19
	E-fuels	0	47	75
Road transport	Hydrogen	334	2714	6354
	E-fuels	0	4453	3569
Inland navigation	Hydrogen	0	6	129
	E-fuels	10	734	1986
Aviation	Hydrogen	0	0	0
	E-fuels	271	1808	5610
Refineries	Hydrogen	522	584	689
	E-fuels	0	248	1615
Power sector	Hydrogen	0	571	1587
	E-fuels	0	33	32
Industry	Hydrogen	409	5397	9855
	E-fuels	0	665	3338
Domestic Sector	Hydrogen	0	446	1244
	E-fuels	0	670	3797
Input to E-fuels	Hydrogen	1636	15653	37567
Total system	Hydrogen	2966	37298	86154

	Biomethane balance (GWh)			
	2030	2040	2050	
Maritime	65	620	2469	
Rail transport	0	0	0	
Road transport	13	148	321	
Inland navigation	1	6	28	
Aviation	0	0	0	
Refineries	22	171	502	
Power sector	153	6124	7185	
Industry	67	431	1040	
Domestic Sector	96	447	1182	
Total	417	7948	12727	

Transport

Example of a projection for Greece

		Hy	drogen an	d e-fuels cap	acities
			2030	2040	2050
Electrolyzer	MW		674	8477	19580
E-methanation	MW		6	344	1970
E-liquids	MW		177	1440	2639
	Hydrogen price pre-tax (€/kgH2)				
	2020	2030	2040	2050	
Power and industry	3.4	2.2	2.1	1.9	
Domestic	3.7	2.6	2.5	2.3	
Transport	4.6	2.8	2.7	2.5	
	Price of blended gas (€/MWh-gas)				
	2020	2030	2040	2050	
Domestic	44.4	43.6	60.8	84.9	

43.5

61.2

88.5

44.4

Towards development of a competitive Hydrogen industry and value chain

No regret: Sectors that today use grey hydrogen

- \cdot Green H₂ in refineries 2 projects of 10 MW electrolyzers
- \cdot Blue hydrogen with CO2 capture and underground storage (Italy or Prinos)
- \cdot Stations for refueling and storage of H2

Transport sector – Refueling Hubs

- · No regret: Heavy Duty Vehicles (buses, coaches, trucks, trains
- Demonstration: Ship using H2 or green ammonia for local shorttrips
- \cdot Ports supplying H2 and e-fuels for bunkering

Blending of biomethane and H2 in gas distribution

Long-term: seasonal storage of electricity

Medium term: Use of H2 in high-temperature uses in industry

Domestic value added opportunities

- \cdot Design and construction works
- · Production of green hydrogen and e-fuels
- \cdot Production of biomethane
- Fuel Cells industry project qualified for funding
- New technology compressors
- · Storage facilities
- \cdot Refueling hubs
- \cdot Manufacturing of pipes
- \cdot Adaptation of heavy-duty vehicles to H2
- \cdot Services IT systems supporting applications
- Research and Innovation international subcontracting

R&D strategy

- \cdot Hydrogen Valleys
- \cdot Technology Hubs
- \cdot Start ups IT

Policy measures – basic principles

Certification and regulation

- \cdot Technical standards and safety
- \cdot Certification of RFNBOs
- \cdot Certification of green hydrogen and biomethane
- \cdot Blue hydrogen only if CCS is available
- \cdot Certification of blending in gas distribution

Regulatory approach for infrastructure

- \cdot Broadening the definition of gas infrastructure
- \cdot Dedicated hydrogen infrastructure
- \cdot Application of the notion of virtual networks

Governance

- Empowering RAE
- \cdot Competences of System Operators
- Management of certification systems
- \cdot Harmonization with EU legislation
- Special regulations for enabling first-of-the-kind infrastructure investment

New synergy between TSO and DSO

- \cdot New coordination issues
- Design to manage commercial and physical operations
- \cdot Reverse flows
- · Cross-border trade of hydrogen
- \cdot Essential facilities and third-party access
- \cdot Tariffs and cost recovery of new infrastructure

Policy measures – basic principles

Priorities	Approach
Facilitation and privileged access of electrolysis to RES	Completion of the legislation
Removal of barriers to the use of hydrogen: (a) Safety, (b) Certification, (c) Supply conditions	Regulatory framework for negotiated third-party access to essential facilities and later regulated third-party access to public infrastructure
	Selection of CAPEX-subsidy projects in no-regret areas
Enabling first-of-the-kind investment (CAPEX subsidy, security about future market)	
	Public-private investment undertaking
Development and access to infrastructure (expansion)	·
	System operators as investor in essential facilities
Measures facilitating market development (contracting	· · · · · · · · · · · · · · · · · · ·
support, standards for market quotas, roles of system operators in market making)	Later, application of new regulatory framework for the hydrogen dedicated infrastructure

Policy measures – basic principles

CAPEX subsidy

- Only at the first stages of market development
- Criteria: market development leverage, value chain integration, no regret area, business and technology reliability

Subsidization of new infrastructure

- In the beginning, focus on refueling hubs, local applications of sufficient scale
- Essential facilities: Biomethane upgrading, pipeline compression and injection stations, liquefaction etc.
- Infrastructure to support crossborder trade

Product subsidization to develop markets

- Contracts for economic differences with subsidies indexed on EU ETS prices for selected industrial applications (possible with hydrogen purchasing agreement)
- Contracts for economic differences with subsidies combined with tax exemption of RFNBO and blending obligation quotas
- Contracts for economic differences with subsidies combined with blending obligation quotas in gas distribution

Facilitation of access to low-cost RES power

- Coupling and additionality as a standard
- Priority of new RES investment when coupled with hydrogen applications
- Exemption of green Hydrogen from network costs, losses and levies in the electricity sector