Here are currently only less effective therapies for prevalent disorders of the nervous system such as Parkinson’s or Alzheimer’s disease and traumatic injuries as paraplegia and head injury. Neuroscientists and neurologists hope to restore the functions of damaged cells of the nervous system using adult stem cells. The researchers of ForNeuroCell aim at developing a „regenerative cell therapy“: either by transplanting host stem cells or by mobilizing and targeted programming of endogenous stem cells and increased protection of precursor cells. Neuroscientists of diverse backgrounds collaborate within this research network: development and molecular biologists, neurologists, neuropathologists, neuroradiologists and physicists. They see a great therapeutic potential in regenerative cell therapy for acute trauma (traumatic brain injury and paraplegia) as well as chronic neurodegenerative diseases (Parkinson’s and Alzheimer’s disease) of the central nervous system.

Hope for the Patients – Less Costs for the Public

Neurodegenerative diseases of the brain such as Parkinson’s and Alzheimer’s disease are among the greatest therapeutic and socio-economic challenges to modern industrialized societies. 1.9 billion € are spent every year on medication for the care of Parkinson patients in Germany. Around 10% of the population over the age of 80 develop Alzheimer-associated dementia, each patient causing costs of 50000 € to 120000 € every year. The patients and the public health system that are bearing the burden of disease and carrying the costs will profit from a regenerative cell based therapy. Younger patients who are still actively working are often severely and permanently disabled by traumatic injuries of the nervous system, causing invalidity and social isolation with far-reaching individual and social consequences. For such patients as well, regenerative cell therapy spells hope.

Spokespersons:
Prof. Dr. Ulrich Bogdahn
Department of Neurology, University of Regensburg
Scientific Coordinator: Prof. Dr. Jürgen Winkler
Department of Neurology, University of Regensburg

Managing Director:
Dr. Rosi Lederer
Phone +49 (0) 89 21 80-7 80 41
Fax +48 (0) 89 21 80-7 80 37
E-mail forneurocell@klinik.uni-regensburg.de
rosi.lederer@klinik.uni-regensburg.de
Internet www.abayfor.de/forneurocell

Ship To: ForNeuroCell c/o ZNP
Feodor-Lynen-Str. 23
D-81377 Munich

Funded for three years by the Bavarian State Ministry of Science, Research and Art with 2.4 Mio. €.
RESEARCH TOPICS:

2. Study of signaling pathways and receptor structures that could serve as application points for medication to increase adult neurogenesis of endogenous stem cells and to affect neural stem cells ex vivo.
3. Mobilization of endogenous host stem cells.
4. Targeted programming or reprogramming of neural stem cells and neural cells.
5. Development of imaging systems for the detection of endogenous as well as transplanted stem cells in the living organism.
6. Pre-clinic testing in acute and chronic lesion models of the central nervous system.

Economic Applications:
Pharmacotherapy and regenerative stem cell based therapy in acute and chronic degenerative disorders of the nervous system.

Academic partners:
- University of Regensburg
 Project Prof. Dr. Jürgen Winkler (scientific coordinator)
 Dr. Beate Winner
 Project PD Dr. Norbert Weidner
 Prof. Dr. Ludwig Aigner
 Project Prof. Dr. Ludwig Aigner
 Dr. Sébastien Couillard-Després
 Prof. Dr. Axel Haase (University of Würzburg)
 Prof. Dr. Gerhard Schuierer
 Prof. Dr. Ulrich Bogdahn (speaker)
- University of Erlangen-Nuremberg
 Project Prof. Dr. Ingmar Blümcke
- University of Munich
 Project Prof. Dr. Magdalena Götz
 Dr. Benedikt Berninger
- Technical University of Munich
 Project Prof. Dr. Claus Zimmer
 Project Prof. Dr. Jürgen Schlegel
 Project Prof. Dr. Wolfgang Wurst
- GSF – National Research Center for Environment and Health
 Project Dr. Chichung Lie
 Project Prof. Dr. Magdalena Götz
 Project Prof. Dr. Wolfgang Wurst

Industrial Partners:
RAPID Biomedical GmbH,
Technology Park Würzburg-Rimpar

Neural progenitor cells visualised by the expression of a green fluorescent protein in the brain of a transgenic mouse. (Fig. Prof. Dr. L. Aigner)

Reprinted, with permission, from the Annual Review of Pharmacology and Toxicology.