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Abstract. Large-scale scientific experiments or simulation programs often gen-
erate large amounts of multidimensional data. Data volume may reach hundreds 
of terabytes (up to petabytes). In the present and the near future, the only prac-
ticable way for storing such large volumes of multidimensional data are tertiary 
storage systems. But commercial (multidimensional) database systems are op-
timized for performance with primary and secondary memory access. So tertiary 
storage memory is only in an insufficient way supported for storing or retrieval 
of multidimensional array data. To combine the advantages of both techniques, 
storing large amounts of data on tertiary storage media and optimizing data ac-
cess for retrieval with multidimensional database management systems is the in-
tention of this paper. We introduce concepts for efficient hierarchical storage 
support and management for large-scale multidimensional array database man-
agement systems and their integration into the commercial array database man-
agement system RasDaMan. 

1 Introduction 

In many large-scale scientific domains, experimental and scanning devices or simula-
tion programs generate large volumes of data. Examples are atmospheric data trans-
mitted by satellites, climate-modeling simulations, flow modelling of chemical reac-
tors, computational fluid dynamics and simulation of the dynamics of gene expres-
sions. In principle, many natural phenomena can be modeled as spatio-temporal array 
data of some specific dimensionality. Their common characteristic is that a huge 
amount (hundreds of terabytes) of multidimensional discrete data (MDD) has to be 
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stored. Actually the common state of the art of storing such large volumes of data is 
tertiary storage systems (mass storage systems), where data are stored as file. Typi-
cally, such tertiary storage systems have robot controlled tape libraries or jukeboxes. 
They provide automated access to hundreds or thousands of media (e.g. magnetic 
tapes, magneto optical tapes, CD-ROMs, DVDs, etc.). Concerning data access the 
main disadvantages are high access latency compared to hard disk devices and to have 
no direct access to specific subsets of data.  

If only a subset of such a large data set is required, the whole file must be trans-
ferred from tertiary storage media. Taking into account the time required to load, 
search, read, rewind and unload several cartridges, it can take many hours to retrieve a 
subset of interest from a large data set. Entire files (data sets) must be loaded manually 
from the magnetic tape, even if only a subset of the file is needed for a further 
processing.  

On the other hand, multidimensional database management systems (DBMS) offer 
efficient retrieval or manipulation of MDDs. They have extended query languages 
with special multidimensional operations like geometric, induced and aggregation 
operations [1, 2]. Concerning data storage the possibility of tertiary storage access is 
lacking, so mass data can’t be managed directly by multidimensional array DBMS. As 
a consequence, in high performance computing applications DMBS are typically used 
for meta-data management only, where meta-data contains the information about the 
location of the data sets (on which medium). 

The ESTEDI1 project addresses the delivery bottleneck of large high-performance 
computing (HPC) results to the users with a flexible data management for spatio-
temporal data. ESTEDI, an initiative of European database developers, software ven-
dors and supercomputing centers, will establish an European standard for the storage 
and retrieval of multidimensional HPC array data. To this end, the multidimensional 
array DBMS RasDaMan will be enhanced with intelligent mass storage handling and 
optimized towards HPC [3]. 

The intention of this paper is a concept of hierarchical storage support, by combin-
ing the advantages of both techniques, storing big amounts of data and realizing effi-
cient data access for retrieval with the multidimensional array DBMS RasDaMan. 
Thus overcoming their shortcomings particularly for scientific applications. This pa-
per is organized as follows: Section 2 gives an overview about the system architecture 
and describes the new-implemented tertiary storage support functionality. In section 3 
we present a concept for efficient storage of multidimensional data. Section 4 will 
have a focus on the tertiary storage management and support for large MDDs. Per-
formance aspects can be found in section 5. Section 6 summarizes the achievements 
and gives an outlook on future work. 
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2 System Architecture 

We have implemented the hierarchical storage management concept and integrated it 
into the first commercial multidimensional array DBMS RasDaMan. RasDaMan is 
distributed by Active Knowledge GmbH (http://www.active-knowledge.com). The 
DBMS RasDaMan (Raster Data Management) is designed for multidimensional array 
data and provides an extended multidimensional query language RasQL [1, 2]. The 
original version of RasDaMan didn’t have a connection to tertiary storage systems 
apart from conventional backup. Within the ESTEDI project we have extended the 
RasDaMan kernel with easy to use functionality to automatically store and retrieve 
data to/from tertiary storage systems. In Figure 1 the architecture of the extended 
RasDaMan system can be seen. 

The left side of the figure depicts the original RasDaMan architecture with the 
RasDaMan client, RasDaMan server and conventional DBMS (e.g. Oracle, which is 
used by RasDaMan as storage and transaction manager). The additional components 
for the tertiary storage interface are the Tertiary Storage Manager (TS-Manager), File 
Storage Manager and Hierarchical Storage Management System (HSM-System). The 
TS-Manager and File Storage Manager are included in the RasDaMan server. The 
HSM-System is a conventional product like SAM (Storage Archiving System) from 
LSC Incorporation or UniTree. Such an HSM-System (to the bottom right in Figure 1) 
can be seen as a normal file system with unlimited storage capacity. In reality, the 
virtual file system of HSM-Systems is separated into a limited cache on which the user 
works (load or store his data) and a tertiary storage system with robot controlled tape 
libraries. The HSM-System automatically migrates or stages the data to or from the 
tertiary storage media, if necessary. 
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Figure 1: Extended RasDaMan architecture with tertiary storage interface 



All in all two possibilities are available for connecting tertiary storage systems to the 
database system RasDaMan. First, an existing system like an HSM-System can be 
used. The other possibility is to develop a proprietary and new connection to a tertiary 
storage system. We decided to use conventional HSM-Systems for the connection of 
tertiary storage devices to RasDaMan. Such HSM-Systems have been developed to 
manage tertiary storage archive systems and to handle thousands of tertiary storage 
media (e.g. magnetic tape). Leading HSM-Systems are sophisticated and support 
robotic libraries of many manufactures. Another important reason for this decision 
was that such HSM-Systems with big robotic libraries (more than 100 TByte storage 
capacity) are already in use by the ESTEDI partners, which are also using RasDaMan. 

 
The new RasDaMan tertiary storage functionality is based on the TS-Manager 

module (shown in Figure 1). This TS-Manager is implemented and integrated into the 
RasDaMan kernel. If a query (RasQL) is executed, the TS-Manager knows whether 
the needed data sets are stored on hard disk or on a tertiary storage media. This meta-
data used by the TS-Manger are stored in RasDaMan respectively the underlying 
DBMS (e.g. Oracle). The performance is much higher if the meta-data are stored 
permanently in the DBMS and not exported to tertiary storage media. If the data sets 
are on hard disk (in the DBMS), the query will be processed without specific tertiary 
storage management. This is the normal procedure of the RasDaMan system without 
tertiary storage connection. If the data sets are stored on one or more tertiary storage 
media, the data sets must be imported into the database system (cache area for tertiary 
storage data sets) first. The import of data sets stored on tertiary storage media is done 
by the TS-Manager automatically whenever a query is executed and those data sets are 
requested. After the import process of the data sets is done, RasDaMan can handle the 
data sets (cached in the DBMS) in the normal way. The TS-Manager of RasDaMan 
has information and meta-data about all data sets, for example where the data sets are 
stored, how the data sets are organized on media, etc. 

After an insert of new data sets they will not be exported to tertiary storage media 
automatically. Sometimes it is necessary to store the data sets only in the DBMS if the 
data access time is critical, e.g. some users have frequent access to the data sets. The 
user can decide, whether the data sets are to be stored on hard disk (which is already 
done by the insert tool) or whether the data sets should be exported on tertiary storage 
media. These two possibilities are flexible in several cases. For example, data sets are 
very often requested by users at the beginning (insert time of data sets) and after sev-
eral months the data sets are less important for these users. In this case, the data sets 
first inserted into the DBMS can be exported to tertiary storage media after several 
months. If the data sets should only be stored in the DBMS, the user does not need to 
do anything else. When the data sets should be exported to tertiary storage media, one 
has to issue an export command. For exporting data sets a new statement was inte-
grated into the RasDaMan query language (EXPORT FROM <data-set> WHERE 
<condition>). We can export complete data sets or only specific parts to the HSM-
System (i.e. to tertiary storage media). Before we will describe details about tertiary 
storage support for multidimensional DBMS (section 4) we have to discuss basics 
about efficient storage of large multidimensional data in the following section. 



3 Efficient Storage of Large Multidimensional Data  

In this section we want introduce techniques of storing large multidimensional data 
efficiently. Later on this techniques will be extended for tertiary storage access. MDD, 
resulting from sampling and quantizing of phenomena like temperature or velocity in 
multidimensional space or represented statistical data, is a commonly used data type, 
in particular the 2D special case of raster images. A MDD object consists of an array 
of cells of some base type (e.g. integer, float or arbitrary complex types), which are 
located on a regular multidimensional grid. For example an MDD can be a 4 dimen-
sional spatio-temporal object, resulting from scientific experiments or simulations and 
can become very large. Since linear storage of those MDDs as binary large objects 
(BLOB) makes it impossible to access only specific areas of interest from one MDD. 
Special multidimensional array DBMS (e.g. RasDaMan) are required for efficient 
MDD support. 

The insufficient support for multidimensional arrays in commercial DBMS has in-
spired research on providing DBMS services (query language, transactions) for MDD, 
aiming at application areas different from traditional DBMS, for instance, scientific 
data management, geographic information systems, environmental data management, 
storage structures techniques. An often discussed approach is chunking or tiling of 
large data sets and is commonly used for multidimensional arrays in different applica-
tion areas [5, 7, 13]. Chunking means subdividing of multidimensional arrays into 
disjoint sub-arrays with the same dimensionality as the original array. All chunks have 
the same shape and size and are therefore aligned. Tiling is more general than chunk-
ing, because sub-arrays don’t have to be aligned or have the same size. MDDs can be 
subdivided in regular or arbitrary tiles. Regular or aligned tiling is identical with 
chunking and is the most common tiling concept in array systems. Further information 
about tiling strategies can be found in [8]. Figure 2 depicts examples of arbitrary and 
regular tiling. 
 

Arbitrary Tiling (2D) Regular Tiling (3D)  
Figure 2: Arbitrary and regular tiling strategy 

 

If tiling is supported by DBMS (e.g. RasDaMan), it is possible to transfer only a sub-
set of large MDDs from the database (or tertiary storage media) to client applications, 
because every tile is stored as one single BLOB in the relational database system. This 
will mainly reduce access time and network traffic. The query response time scales 
with size of query box, not with size of MDD. Now we can handle large data sets 
efficiently. 

In the commercial DBMS RasDaMan, BLOBs (tiles) are the smallest units of data 
access. In order to manage these units in main memory, a limit on tile size is usually 



imposed. This limit should be set to multiples of one database page. Typical sizes of 
tiles stored in RasDaMan range from 32 KByte to 640 KByte and are optimized for 
hard disk access [8]. As we will see those tile sizes are much to small for data sets 
held on tertiary storage media. It is necessary to choose different granularities for hard 
disk and tape access, because they differ significantly in their access characteristics. 
Hard disks have fast random access, whereas tape systems have sequential access with 
much higher access latency. More details about performance of tertiary storage de-
vices can be found in [10]. It is important to use data management techniques for 
efficiently retrieving arbitrary areas of interest from large data sets stored on tertiary 
storage devices. We have to find some partitioning techniques that partition data sets 
into clusters based on optimized data access patterns and storage device characteris-
tics.  

4 Tertiary Storage Support for Multidimensional DBMS 

The average access time (e.g. load, switch, positioning time) for tape systems (20 – 
180s) is by order of magnitude slower than for hard disk drives (5 - 12ms), whereas 
the difference between transfer rate of hard disk and tertiary storage systems isn't so 
important (factor 2 or 3). The main goal is to minimize the number of media load and 
search operations and to reduce the access time of clusters read from tertiary storage 
system when subsets are needed [6]. Generally there are several possibilities for opti-
mization of the access costs. An important point is the granularity of the data stored on 
media and read from media. Particularly the size of the data blocks, which are moved 
from tape to the hard disk cache, is critical. On the one hand, preferably small data 
blocks should be transferred over the network to minimize the network traffic. On the 
other hand, the transfer rate of tertiary storage systems is not bad and the quantity of 
tape access should be minimized. On this reason the size of data blocks stored on 
tertiary storage media should be more than 100 MByte. It is unreasonable to increase 
the RasDaMan MDD tile size (32 – 640 KByte), because then we would loose the 
advantage of transferring only small subsets of the MDDs to the client application. A 
promising idea is to introduce an additional data granularity as provided by the so-
called Super-Tile concept. In the following section we will present the newly devel-
oped Super-Tile concept. 
 
4.1 The Super-Tile Concept 
 

The main goal of the new Super-Tile concept is a smart combination of several small 
MDD tiles to one Super-Tile for minimizing tertiary storage access costs. Smart 
means to exploit the good transfer rate of tertiary storage devices and to take advan-
tage of other concepts like clustering of data. In ESTEDI, where RasDaMan is used as 
multidimensional DBMS the multidimensional index R+ tree for realizing fast random 
access of arbitrary tiles stored on disk is used [9, 12]. The conventional R+ tree index 
structure of the multidimensional DBMS was extended to handle such Super-Tiles 
stored on tertiary storage media. This means that information regarding which tiles are 
stored on hard disk and which are stored on tertiary storage media must be integrated 



into the index. Tiles of the same subindex of the R+ tree are combined into a Super-
Tile and stored on tertiary storage medium. The specific tertiary storage manager 
knows on the basis of the structure of the multidimensional R+ tree that all tiles below 
this subindex (subtree of a R+ tree node) are combined to a Super-Tile and stored on 
the same tertiary storage media. A node of such a subindex is called a Super-Tile 
node.  

Figure 3 depicts an example of the R+ tree index of one MDD with the correspond-
ing Super-Tile nodes. Only complete nodes of the R+ tree can become Super-Tile 
nodes (e.g. the ST1 node in Figure 3). This means that all tiles of the included leaf 
nodes (in an R+ tree, data is only stored in leaf nodes) of one Super-Tile node are 
combined to one Super-Tile (light gray circle/oval). As a consequence, Super-Tiles 
can only be multiples of tiles.  

 

 
Figure 3: Example R+ tree index of one MDD with Super-Tile nodes 

 

Super-Tile nodes can be on arbitrary levels of the R+ tree. In the example of Figure 3 
we have 5 Super-Tile nodes (ST1 - ST5). The Super-Tile nodes ST1 and ST2 are on 
the second level of the tree and the corresponding Super-Tiles include 9 Tiles. The 
Super-Tile nodes ST3, ST4 and ST5 are on the third level of the tree and the corre-
sponding Super-Tiles include only 3 Tiles. 

We developed an algorithm for computing Super-Tile nodes inside the R+ tree. A 
general restriction of the Super-Tile algorithm is that only one Super-Tile node is 
contained in one path (from node to root) of the R+ tree. The algorithm traverse the 
R+ tree bottom-up and compute the size of the data (tiles), which is referenced in the 
subtree. For the detection of Super-Tile nodes the predefined size of the Super-Tiles is 
used. If the summarized size of the subtree of an index node is greater than the prede-
fined Super-Tile size all child nodes get Super-Tile nodes. If the summarized size of 
tiles contained in the subtree of a node is smaller than the predefined Super-Tile size 
this node remains a candidate. The user can define suitable Super-Tile sizes, opti-
mized for the data and tertiary storage access characteristics. If the user defines no 
Super-Tile size, a default maximum size of 200 MByte will be used. Extensive tests 
have shown that this Super-Tile size shows good performance characteristics in most 
cases and the Super-Tile algorithm produces Super-Tiles, which have about 60% to 
80% of the size of the predefined Super-Tile size. More details about determining 
optimal file sizes on tertiary storage media can be found in [4].  



Super-Tiles are the access (import/export) granularity of MDD on tertiary storage 
media. The retrieval of data stored on hard disk or on tertiary storage media is trans-
parent for the user. Only the access time is higher if data stored on tertiary storage 
media. In order to improve performance, the whole index of all data (held on hard disk 
and tertiary storage media) is stored on hard disk. We will now discuss two further 
strategies for reducing tertiary storage access time, clustering and caching [11]. 
 
4.2 Strategies for Reducing Tertiary Storage Access Time 

Clustering 
Clustering is particularly important for tertiary storage systems where positioning time 
of the device is very high. The clustering of data sets reduces the positioning and 
exchange time of tertiary storage media. Clustering uses the spatial neighborhood of 
tiles within the data sets. Clustering of tiles according to spatial neighborhood on one 
disk or tertiary storage system proceed one step further in the preservation of spatial 
proximity, which is important for the typical access patterns of array data, because 
users often request data using range queries, which implies spatial neighbourhood. 
The used R+ tree index to address MDD’s tiles already defines the clustering of the 
stored MDDs. With the developed Super-Tile concept we can distinguish intra Super-
Tile clustering and inter Super-Tile clustering.  
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Figure 4: Inter and intra Super-Tile clustering of tiles stored on magnetic tape 
 

The implemented algorithm for computing the Super-Tiles (see chapter 4.1) maintains 
the predefined clustering of subtrees (of Super-Tile nodes) of the R+ tree index and 
realizes intra Super-Tile clustering. Inside one Super-Tile we have clustering, i.e. 
neighborhood of the spatial location of the included tiles. The export algorithm (ex-
port of Super-Tiles to tertiary storage) realizes the inter Super-Tile clustering within 
one MDD. The various Super-Tiles of one MDD are written to tertiary storage media 
in the clustered order (predefined R+ tree clustering). Inter and intra Super-Tile clus-
tering of tiles stored on magnetic tape is shown in Figure 4. 

Caching 
In order to reduce expensive tertiary storage media access the underlying DBMS of 
RasDaMan can be used as hard disk cache for data sets held on tertiary storage media. 
The general goal of caching tertiary storage data (Super-Tile granularity) is to mini-



mize expensive loading, rewinding and reading operations from slower storage levels 
(e.g. magnetic tape). In the tertiary storage version, requested data sets held on tertiary 
storage media are migrated to the underlying DBMS of RasDaMan (see Figure 1). 
The migrated Super-Tiles are now cached in the DBMS. After the migration the Ras-
DaMan server transfers the requested tiles from the DBMS to the client application. 
For a better differentiation of data stored persistent in the DBMS (i.e. how data sets 
were held in the original version of the multidimensional DBMS) and data, which are 
only be, cached in the DBMS we call the storage location of the cached objects 
DBMS cache area. 

The advantage of caching is that the data held on tertiary storage media doesn’t 
have to be imported to the DBMS cache area for every request. The import of the 
requested data from the tertiary storage media is extremely expensive because the 
transfer from tertiary storage system to hard disk is slow (media loading time, media 
exchange time, media rewind time, seek time, read time, transfer rate, etc.). The sec-
ond request to this data is very fast because the data is already held in the DBMS 
cache area. The tertiary storage Cache-Manager only evicts data (Super-Tiles granu-
larity) from the DBMS cache area if necessary (the upper limit of the cache size is 
reached). At the moment the LRU (Least Recently Used) replacement strategy is sup-
ported and shows good performance. Other replacement strategies will be tested with 
tertiary storage devices. The general goal of these policies is to substitute only the data 
(Super-Tiles) that is least likely to be reused. In this research area, optimization algo-
rithms especially for tertiary storage systems must be found. 

5 Performance Aspects 

First we show the main advantage of the developed hierarchical storage support for 
large-scale DBMS. The ESTEDI partners typically have to load whole MDDs (stored 
as single files) from tertiary storage devices, even if only a subset is required for fur-
ther analysis. This means that the request response time scales with the size of the 
stored MDD. Using RasDaMan and the integrated tertiary storage access subsets of 
MDDs can be loaded and for this reason the query response time scales with the size 
of the query box and not with the size of the MDD (see Figure 5).  
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Figure 5: Access comparison with fixed query box size and with fixed MDD size 



 

In this example we assume a Super-Tile size of 200 MByte. On the left side of Figure 
5 we have a fixed query box size of 400 MByte and the MDD size is increasing, 
which means two Super-Tiles must be loaded at least and the access costs are stagnat-
ing. In the traditional case the access costs are scaling with the MDD size. If the MDD 
size is smaller than the predefined Super-Tile size the complete MDD has to be loaded 
and therefore the same access time is expected. Typically such small MDDs are not 
stored on tertiary storage medium. On the right side of Figure 5 the MDD size is fixed 
(3 GByte) and the query box is increasing. If we have access with Super-Tile granular-
ity the access costs are increasing step by step. Otherwise with traditional access we 
have constant access costs, as the complete MDD must be loaded. 

Now we briefly discuss the performance of the export and retrieval functionality of 
the new tertiary storage version of RasDaMan. The export of data sets to tertiary stor-
age media is very fast because the data sets just have to be written to the virtual file 
system of the HSM-System. This means storing data sets on the hard disk cache of the 
HSM-System. The migration of the data sets from the HSM cache to the tertiary stor-
age media does not concern the RasDaMan system. For the retrieval functionality 
three cases must be distinguished. In the first case we assume that the data sets needed 
are already held in the DMBS cache area of RasDaMan. This request operation is very 
fast, because no import of data from the HSM-System has to be done. In the second 
case the data sets required are held in the hard disk cache of the HSM-System. This is 
quite likely because the size of the HSM cache is normally hundreds of GByte. In this 
case the import of the data sets is as fast as the export of the data sets because the data 
sets don’t have to be staged from the tertiary storage media. This access is about fac-
tor 1.8 to 3 slower compared to normal DMBS access (dependent on network traffic, 
transfer rate, etc.). We assume for the third case that the data sets requested are not 
held in the HSM cache. This means the HSM-System must first stage the data sets 
needed from the tertiary storage media to the HSM cache and then the data sets are 
transferred to the RasDaMan system. Compared with DBMS access we measured a 
slowdown of factor 3 to 10 (dependent on tertiary storage device, transfer rate, etc.). 

6 Conclusion and Future Work 

The initial point of our development was that members of the ESTEDI project have large 
volumes of multidimensional array data, generated by scientific simulations, which are 
stored as files on tertiary storage media.  

The main goal of our development was to realize a fast and efficient access to terti-
ary storage media and provide access functionality like retrieval of subsets as common 
for DBMS since a long time. This means the request response time scale now with the 
size of the query box, not with the size of MDD like the traditional case of the 
ESTEDI partner. In our approach we use a multidimensional array DBMS for optimal 
storage, retrieval and manipulation of large MDD. A major bottleneck of the commer-
cial multidimensional array DBMS RasDaMan is that it was originally not designed to 
use tertiary storage media for storing hundreds of terabytes (up to petabytes). To han-
dle the data amounts stored on tertiary storage an interface was presented to connect 



tertiary storage systems to the multidimensional array DBMS RasDaMan. Conse-
quently, we created a hierarchical storage support and management system for large-
scale multidimensional array DBMS, which is specifically designed and optimized 
(using clustering and caching of Super-Tiles) for storing multidimensional array data 
on tertiary storage media. 

Future work will be the development of scheduling techniques for multidimensional 
array data streamlined for Super-Tiles. Scheduling for tertiary storage media means 
the optimization of the media read order. This optimization reduces expensive media 
seek and exchange operations. The focus is on scheduling policies that process all 
requests on a loaded medium before exchanging it in the loading station of the robotic 
library. We can differ intra and inter query scheduling. Intra query scheduling will 
optimize the request order within one query. Inter query scheduling can be done in 
RasDaMan by examining the query queue. If the actual query needs Super-Tiles from 
one MDD and a further query of the query queue also needs several Super-Tiles from 
the same MDD, all needed Super-Tiles will be imported at the same time into the 
RasDaMan cache area. 
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