
Hierarchical Storage Support and Management for
Large-Scale Multidimensional Array Database

Management Systems1

Bernd Reiner♦, Karl Hahn♦, Gabriele Höfling♦, Peter Baumann■

♦ FORWISS (Bavarian Research Center for Knowledge Based Systems)
Orleansstr. 34, 81667 Munich, Germany

{reiner, hahnk, hoefling}@forwiss.tu-muenchen.de
http://www.wibas.forwiss.tu-muenchen.de

■ Active Knowledge GmbH, Kirchenstrasse 88,
81675 Munich, Germany

baumann@active-knowledge.com
http://www.active-knowledge.de

Abstract. Large-scale scientific experiments or simulation programs often gen-
erate large amounts of multidimensional data. Data volume may reach hundreds
of terabytes (up to petabytes). In the present and the near future, the only prac-
ticable way for storing such large volumes of multidimensional data are tertiary
storage systems. But commercial (multidimensional) database systems are op-
timized for performance with primary and secondary memory access. So tertiary
storage memory is only in an insufficient way supported for storing or retrieval
of multidimensional array data. To combine the advantages of both techniques,
storing large amounts of data on tertiary storage media and optimizing data ac-
cess for retrieval with multidimensional database management systems is the in-
tention of this paper. We introduce concepts for efficient hierarchical storage
support and management for large-scale multidimensional array database man-
agement systems and their integration into the commercial array database man-
agement system RasDaMan.

1 Introduction

In many large-scale scientific domains, experimental and scanning devices or simula-
tion programs generate large volumes of data. Examples are atmospheric data trans-
mitted by satellites, climate-modeling simulations, flow modelling of chemical reac-
tors, computational fluid dynamics and simulation of the dynamics of gene expres-
sions. In principle, many natural phenomena can be modeled as spatio-temporal array
data of some specific dimensionality. Their common characteristic is that a huge
amount (hundreds of terabytes) of multidimensional discrete data (MDD) has to be

1 This work was supported by the ESTEDI project (http://www.estedi.org). ESTEDI (European

Spatio-Temporal Data Infrastructure for High-Performance Computing) is funded by the
European Commission under FP5 grant no. IST-1999-11009.

stored. Actually the common state of the art of storing such large volumes of data is
tertiary storage systems (mass storage systems), where data are stored as file. Typi-
cally, such tertiary storage systems have robot controlled tape libraries or jukeboxes.
They provide automated access to hundreds or thousands of media (e.g. magnetic
tapes, magneto optical tapes, CD-ROMs, DVDs, etc.). Concerning data access the
main disadvantages are high access latency compared to hard disk devices and to have
no direct access to specific subsets of data.

If only a subset of such a large data set is required, the whole file must be trans-
ferred from tertiary storage media. Taking into account the time required to load,
search, read, rewind and unload several cartridges, it can take many hours to retrieve a
subset of interest from a large data set. Entire files (data sets) must be loaded manually
from the magnetic tape, even if only a subset of the file is needed for a further
processing.

On the other hand, multidimensional database management systems (DBMS) offer
efficient retrieval or manipulation of MDDs. They have extended query languages
with special multidimensional operations like geometric, induced and aggregation
operations [1, 2]. Concerning data storage the possibility of tertiary storage access is
lacking, so mass data can’t be managed directly by multidimensional array DBMS. As
a consequence, in high performance computing applications DMBS are typically used
for meta-data management only, where meta-data contains the information about the
location of the data sets (on which medium).

The ESTEDI1 project addresses the delivery bottleneck of large high-performance
computing (HPC) results to the users with a flexible data management for spatio-
temporal data. ESTEDI, an initiative of European database developers, software ven-
dors and supercomputing centers, will establish an European standard for the storage
and retrieval of multidimensional HPC array data. To this end, the multidimensional
array DBMS RasDaMan will be enhanced with intelligent mass storage handling and
optimized towards HPC [3].

The intention of this paper is a concept of hierarchical storage support, by combin-
ing the advantages of both techniques, storing big amounts of data and realizing effi-
cient data access for retrieval with the multidimensional array DBMS RasDaMan.
Thus overcoming their shortcomings particularly for scientific applications. This pa-
per is organized as follows: Section 2 gives an overview about the system architecture
and describes the new-implemented tertiary storage support functionality. In section 3
we present a concept for efficient storage of multidimensional data. Section 4 will
have a focus on the tertiary storage management and support for large MDDs. Per-
formance aspects can be found in section 5. Section 6 summarizes the achievements
and gives an outlook on future work.

1 ESTEDI (European Spatio-Temporal Data Infrastructure for High-Performance Computing)

project (http://www.estedi.org) is funded by the European Commission under FP5 grant no.
IST-1999-11009. Project Partner are FORWISS (DE), Active Knowledge (DE), DLR (DE),
MPIM (DE), University of Surrey (GB), CCLRC (GB), Numeca (BE), Cineca (IT), CSCS
(CH) and IHPC&DB (RU).

2 System Architecture

We have implemented the hierarchical storage management concept and integrated it
into the first commercial multidimensional array DBMS RasDaMan. RasDaMan is
distributed by Active Knowledge GmbH (http://www.active-knowledge.com). The
DBMS RasDaMan (Raster Data Management) is designed for multidimensional array
data and provides an extended multidimensional query language RasQL [1, 2]. The
original version of RasDaMan didn’t have a connection to tertiary storage systems
apart from conventional backup. Within the ESTEDI project we have extended the
RasDaMan kernel with easy to use functionality to automatically store and retrieve
data to/from tertiary storage systems. In Figure 1 the architecture of the extended
RasDaMan system can be seen.

The left side of the figure depicts the original RasDaMan architecture with the
RasDaMan client, RasDaMan server and conventional DBMS (e.g. Oracle, which is
used by RasDaMan as storage and transaction manager). The additional components
for the tertiary storage interface are the Tertiary Storage Manager (TS-Manager), File
Storage Manager and Hierarchical Storage Management System (HSM-System). The
TS-Manager and File Storage Manager are included in the RasDaMan server. The
HSM-System is a conventional product like SAM (Storage Archiving System) from
LSC Incorporation or UniTree. Such an HSM-System (to the bottom right in Figure 1)
can be seen as a normal file system with unlimited storage capacity. In reality, the
virtual file system of HSM-Systems is separated into a limited cache on which the user
works (load or store his data) and a tertiary storage system with robot controlled tape
libraries. The HSM-System automatically migrates or stages the data to or from the
tertiary storage media, if necessary.

Client

Tertiary Storage Manager

RasDaMan Server

RasQL

DBMS
Oracle / DB2

SQL

DBMS
HDD

HSM
migration

stage

File Storage Manager

cache

Client

Tertiary Storage Manager

RasDaMan Server

RasQL

DBMS
Oracle / DB2

DBMS
Oracle / DB2

SQL

DBMS
HDD

HSM
migration

stage

File Storage Manager

cache

Figure 1: Extended RasDaMan architecture with tertiary storage interface

All in all two possibilities are available for connecting tertiary storage systems to the
database system RasDaMan. First, an existing system like an HSM-System can be
used. The other possibility is to develop a proprietary and new connection to a tertiary
storage system. We decided to use conventional HSM-Systems for the connection of
tertiary storage devices to RasDaMan. Such HSM-Systems have been developed to
manage tertiary storage archive systems and to handle thousands of tertiary storage
media (e.g. magnetic tape). Leading HSM-Systems are sophisticated and support
robotic libraries of many manufactures. Another important reason for this decision
was that such HSM-Systems with big robotic libraries (more than 100 TByte storage
capacity) are already in use by the ESTEDI partners, which are also using RasDaMan.

The new RasDaMan tertiary storage functionality is based on the TS-Manager

module (shown in Figure 1). This TS-Manager is implemented and integrated into the
RasDaMan kernel. If a query (RasQL) is executed, the TS-Manager knows whether
the needed data sets are stored on hard disk or on a tertiary storage media. This meta-
data used by the TS-Manger are stored in RasDaMan respectively the underlying
DBMS (e.g. Oracle). The performance is much higher if the meta-data are stored
permanently in the DBMS and not exported to tertiary storage media. If the data sets
are on hard disk (in the DBMS), the query will be processed without specific tertiary
storage management. This is the normal procedure of the RasDaMan system without
tertiary storage connection. If the data sets are stored on one or more tertiary storage
media, the data sets must be imported into the database system (cache area for tertiary
storage data sets) first. The import of data sets stored on tertiary storage media is done
by the TS-Manager automatically whenever a query is executed and those data sets are
requested. After the import process of the data sets is done, RasDaMan can handle the
data sets (cached in the DBMS) in the normal way. The TS-Manager of RasDaMan
has information and meta-data about all data sets, for example where the data sets are
stored, how the data sets are organized on media, etc.

After an insert of new data sets they will not be exported to tertiary storage media
automatically. Sometimes it is necessary to store the data sets only in the DBMS if the
data access time is critical, e.g. some users have frequent access to the data sets. The
user can decide, whether the data sets are to be stored on hard disk (which is already
done by the insert tool) or whether the data sets should be exported on tertiary storage
media. These two possibilities are flexible in several cases. For example, data sets are
very often requested by users at the beginning (insert time of data sets) and after sev-
eral months the data sets are less important for these users. In this case, the data sets
first inserted into the DBMS can be exported to tertiary storage media after several
months. If the data sets should only be stored in the DBMS, the user does not need to
do anything else. When the data sets should be exported to tertiary storage media, one
has to issue an export command. For exporting data sets a new statement was inte-
grated into the RasDaMan query language (EXPORT FROM <data-set> WHERE
<condition>). We can export complete data sets or only specific parts to the HSM-
System (i.e. to tertiary storage media). Before we will describe details about tertiary
storage support for multidimensional DBMS (section 4) we have to discuss basics
about efficient storage of large multidimensional data in the following section.

3 Efficient Storage of Large Multidimensional Data

In this section we want introduce techniques of storing large multidimensional data
efficiently. Later on this techniques will be extended for tertiary storage access. MDD,
resulting from sampling and quantizing of phenomena like temperature or velocity in
multidimensional space or represented statistical data, is a commonly used data type,
in particular the 2D special case of raster images. A MDD object consists of an array
of cells of some base type (e.g. integer, float or arbitrary complex types), which are
located on a regular multidimensional grid. For example an MDD can be a 4 dimen-
sional spatio-temporal object, resulting from scientific experiments or simulations and
can become very large. Since linear storage of those MDDs as binary large objects
(BLOB) makes it impossible to access only specific areas of interest from one MDD.
Special multidimensional array DBMS (e.g. RasDaMan) are required for efficient
MDD support.

The insufficient support for multidimensional arrays in commercial DBMS has in-
spired research on providing DBMS services (query language, transactions) for MDD,
aiming at application areas different from traditional DBMS, for instance, scientific
data management, geographic information systems, environmental data management,
storage structures techniques. An often discussed approach is chunking or tiling of
large data sets and is commonly used for multidimensional arrays in different applica-
tion areas [5, 7, 13]. Chunking means subdividing of multidimensional arrays into
disjoint sub-arrays with the same dimensionality as the original array. All chunks have
the same shape and size and are therefore aligned. Tiling is more general than chunk-
ing, because sub-arrays don’t have to be aligned or have the same size. MDDs can be
subdivided in regular or arbitrary tiles. Regular or aligned tiling is identical with
chunking and is the most common tiling concept in array systems. Further information
about tiling strategies can be found in [8]. Figure 2 depicts examples of arbitrary and
regular tiling.

Arbitrary Tiling (2D) Regular Tiling (3D)
Figure 2: Arbitrary and regular tiling strategy

If tiling is supported by DBMS (e.g. RasDaMan), it is possible to transfer only a sub-
set of large MDDs from the database (or tertiary storage media) to client applications,
because every tile is stored as one single BLOB in the relational database system. This
will mainly reduce access time and network traffic. The query response time scales
with size of query box, not with size of MDD. Now we can handle large data sets
efficiently.

In the commercial DBMS RasDaMan, BLOBs (tiles) are the smallest units of data
access. In order to manage these units in main memory, a limit on tile size is usually

imposed. This limit should be set to multiples of one database page. Typical sizes of
tiles stored in RasDaMan range from 32 KByte to 640 KByte and are optimized for
hard disk access [8]. As we will see those tile sizes are much to small for data sets
held on tertiary storage media. It is necessary to choose different granularities for hard
disk and tape access, because they differ significantly in their access characteristics.
Hard disks have fast random access, whereas tape systems have sequential access with
much higher access latency. More details about performance of tertiary storage de-
vices can be found in [10]. It is important to use data management techniques for
efficiently retrieving arbitrary areas of interest from large data sets stored on tertiary
storage devices. We have to find some partitioning techniques that partition data sets
into clusters based on optimized data access patterns and storage device characteris-
tics.

4 Tertiary Storage Support for Multidimensional DBMS

The average access time (e.g. load, switch, positioning time) for tape systems (20 –
180s) is by order of magnitude slower than for hard disk drives (5 - 12ms), whereas
the difference between transfer rate of hard disk and tertiary storage systems isn't so
important (factor 2 or 3). The main goal is to minimize the number of media load and
search operations and to reduce the access time of clusters read from tertiary storage
system when subsets are needed [6]. Generally there are several possibilities for opti-
mization of the access costs. An important point is the granularity of the data stored on
media and read from media. Particularly the size of the data blocks, which are moved
from tape to the hard disk cache, is critical. On the one hand, preferably small data
blocks should be transferred over the network to minimize the network traffic. On the
other hand, the transfer rate of tertiary storage systems is not bad and the quantity of
tape access should be minimized. On this reason the size of data blocks stored on
tertiary storage media should be more than 100 MByte. It is unreasonable to increase
the RasDaMan MDD tile size (32 – 640 KByte), because then we would loose the
advantage of transferring only small subsets of the MDDs to the client application. A
promising idea is to introduce an additional data granularity as provided by the so-
called Super-Tile concept. In the following section we will present the newly devel-
oped Super-Tile concept.

4.1 The Super-Tile Concept

The main goal of the new Super-Tile concept is a smart combination of several small
MDD tiles to one Super-Tile for minimizing tertiary storage access costs. Smart
means to exploit the good transfer rate of tertiary storage devices and to take advan-
tage of other concepts like clustering of data. In ESTEDI, where RasDaMan is used as
multidimensional DBMS the multidimensional index R+ tree for realizing fast random
access of arbitrary tiles stored on disk is used [9, 12]. The conventional R+ tree index
structure of the multidimensional DBMS was extended to handle such Super-Tiles
stored on tertiary storage media. This means that information regarding which tiles are
stored on hard disk and which are stored on tertiary storage media must be integrated

into the index. Tiles of the same subindex of the R+ tree are combined into a Super-
Tile and stored on tertiary storage medium. The specific tertiary storage manager
knows on the basis of the structure of the multidimensional R+ tree that all tiles below
this subindex (subtree of a R+ tree node) are combined to a Super-Tile and stored on
the same tertiary storage media. A node of such a subindex is called a Super-Tile
node.

Figure 3 depicts an example of the R+ tree index of one MDD with the correspond-
ing Super-Tile nodes. Only complete nodes of the R+ tree can become Super-Tile
nodes (e.g. the ST1 node in Figure 3). This means that all tiles of the included leaf
nodes (in an R+ tree, data is only stored in leaf nodes) of one Super-Tile node are
combined to one Super-Tile (light gray circle/oval). As a consequence, Super-Tiles
can only be multiples of tiles.

Figure 3: Example R+ tree index of one MDD with Super-Tile nodes

Super-Tile nodes can be on arbitrary levels of the R+ tree. In the example of Figure 3
we have 5 Super-Tile nodes (ST1 - ST5). The Super-Tile nodes ST1 and ST2 are on
the second level of the tree and the corresponding Super-Tiles include 9 Tiles. The
Super-Tile nodes ST3, ST4 and ST5 are on the third level of the tree and the corre-
sponding Super-Tiles include only 3 Tiles.

We developed an algorithm for computing Super-Tile nodes inside the R+ tree. A
general restriction of the Super-Tile algorithm is that only one Super-Tile node is
contained in one path (from node to root) of the R+ tree. The algorithm traverse the
R+ tree bottom-up and compute the size of the data (tiles), which is referenced in the
subtree. For the detection of Super-Tile nodes the predefined size of the Super-Tiles is
used. If the summarized size of the subtree of an index node is greater than the prede-
fined Super-Tile size all child nodes get Super-Tile nodes. If the summarized size of
tiles contained in the subtree of a node is smaller than the predefined Super-Tile size
this node remains a candidate. The user can define suitable Super-Tile sizes, opti-
mized for the data and tertiary storage access characteristics. If the user defines no
Super-Tile size, a default maximum size of 200 MByte will be used. Extensive tests
have shown that this Super-Tile size shows good performance characteristics in most
cases and the Super-Tile algorithm produces Super-Tiles, which have about 60% to
80% of the size of the predefined Super-Tile size. More details about determining
optimal file sizes on tertiary storage media can be found in [4].

Super-Tiles are the access (import/export) granularity of MDD on tertiary storage
media. The retrieval of data stored on hard disk or on tertiary storage media is trans-
parent for the user. Only the access time is higher if data stored on tertiary storage
media. In order to improve performance, the whole index of all data (held on hard disk
and tertiary storage media) is stored on hard disk. We will now discuss two further
strategies for reducing tertiary storage access time, clustering and caching [11].

4.2 Strategies for Reducing Tertiary Storage Access Time

Clustering
Clustering is particularly important for tertiary storage systems where positioning time
of the device is very high. The clustering of data sets reduces the positioning and
exchange time of tertiary storage media. Clustering uses the spatial neighborhood of
tiles within the data sets. Clustering of tiles according to spatial neighborhood on one
disk or tertiary storage system proceed one step further in the preservation of spatial
proximity, which is important for the typical access patterns of array data, because
users often request data using range queries, which implies spatial neighbourhood.
The used R+ tree index to address MDD’s tiles already defines the clustering of the
stored MDDs. With the developed Super-Tile concept we can distinguish intra Super-
Tile clustering and inter Super-Tile clustering.

Super-Tile
10

Super-Tile
11

Super-Tile
12

m agnetic tape

tile 1 tile 2 tile 3 tile z

intra Super-Tile clustering

inter Super-Tile clustering

Figure 4: Inter and intra Super-Tile clustering of tiles stored on magnetic tape

The implemented algorithm for computing the Super-Tiles (see chapter 4.1) maintains
the predefined clustering of subtrees (of Super-Tile nodes) of the R+ tree index and
realizes intra Super-Tile clustering. Inside one Super-Tile we have clustering, i.e.
neighborhood of the spatial location of the included tiles. The export algorithm (ex-
port of Super-Tiles to tertiary storage) realizes the inter Super-Tile clustering within
one MDD. The various Super-Tiles of one MDD are written to tertiary storage media
in the clustered order (predefined R+ tree clustering). Inter and intra Super-Tile clus-
tering of tiles stored on magnetic tape is shown in Figure 4.

Caching
In order to reduce expensive tertiary storage media access the underlying DBMS of
RasDaMan can be used as hard disk cache for data sets held on tertiary storage media.
The general goal of caching tertiary storage data (Super-Tile granularity) is to mini-

mize expensive loading, rewinding and reading operations from slower storage levels
(e.g. magnetic tape). In the tertiary storage version, requested data sets held on tertiary
storage media are migrated to the underlying DBMS of RasDaMan (see Figure 1).
The migrated Super-Tiles are now cached in the DBMS. After the migration the Ras-
DaMan server transfers the requested tiles from the DBMS to the client application.
For a better differentiation of data stored persistent in the DBMS (i.e. how data sets
were held in the original version of the multidimensional DBMS) and data, which are
only be, cached in the DBMS we call the storage location of the cached objects
DBMS cache area.

The advantage of caching is that the data held on tertiary storage media doesn’t
have to be imported to the DBMS cache area for every request. The import of the
requested data from the tertiary storage media is extremely expensive because the
transfer from tertiary storage system to hard disk is slow (media loading time, media
exchange time, media rewind time, seek time, read time, transfer rate, etc.). The sec-
ond request to this data is very fast because the data is already held in the DBMS
cache area. The tertiary storage Cache-Manager only evicts data (Super-Tiles granu-
larity) from the DBMS cache area if necessary (the upper limit of the cache size is
reached). At the moment the LRU (Least Recently Used) replacement strategy is sup-
ported and shows good performance. Other replacement strategies will be tested with
tertiary storage devices. The general goal of these policies is to substitute only the data
(Super-Tiles) that is least likely to be reused. In this research area, optimization algo-
rithms especially for tertiary storage systems must be found.

5 Performance Aspects

First we show the main advantage of the developed hierarchical storage support for
large-scale DBMS. The ESTEDI partners typically have to load whole MDDs (stored
as single files) from tertiary storage devices, even if only a subset is required for fur-
ther analysis. This means that the request response time scales with the size of the
stored MDD. Using RasDaMan and the integrated tertiary storage access subsets of
MDDs can be loaded and for this reason the query response time scales with the size
of the query box and not with the size of the MDD (see Figure 5).

acce ss
cos ts

M DD s ize (in M B yte)

4 0 0 8 0 0 1 2 0 0 1 6 0 0 2 0 0 0 2 4 0 0 2 8 0 0

T ra dit io nal
acce ss

Acce ss with S u pe r-
Tile gra n ula rity

F ixed s ize o f query bo x
acce ss
cos ts

S ize of que ry box (in M B yte)

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0

T ra dit io nal
acce ss

Acce ss with S upe r-
Tile gra n ula rity

F ixed M D D size
acce ss
cos ts

M DD s ize (in M B yte)

4 0 0 8 0 0 1 2 0 0 1 6 0 0 2 0 0 0 2 4 0 0 2 8 0 0

T ra dit io nal
acce ss

Acce ss with S u pe r-
Tile gra n ula rity

F ixed s ize o f query bo x
acce ss
cos ts

M DD s ize (in M B yte)

4 0 0 8 0 0 1 2 0 0 1 6 0 0 2 0 0 0 2 4 0 0 2 8 0 0

T ra dit io nal
acce ss

Acce ss with S u pe r-
Tile gra n ula rity

F ixed s ize o f query bo x
acce ss
cos ts

S ize of que ry box (in M B yte)

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0

T ra dit io nal
acce ss

Acce ss with S upe r-
Tile gra n ula rity

F ixed M D D size
acce ss
cos ts

S ize of que ry box (in M B yte)

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0

T ra dit io nal
acce ss

Acce ss with S upe r-
Tile gra n ula rity

F ixed M D D size

Figure 5: Access comparison with fixed query box size and with fixed MDD size

In this example we assume a Super-Tile size of 200 MByte. On the left side of Figure
5 we have a fixed query box size of 400 MByte and the MDD size is increasing,
which means two Super-Tiles must be loaded at least and the access costs are stagnat-
ing. In the traditional case the access costs are scaling with the MDD size. If the MDD
size is smaller than the predefined Super-Tile size the complete MDD has to be loaded
and therefore the same access time is expected. Typically such small MDDs are not
stored on tertiary storage medium. On the right side of Figure 5 the MDD size is fixed
(3 GByte) and the query box is increasing. If we have access with Super-Tile granular-
ity the access costs are increasing step by step. Otherwise with traditional access we
have constant access costs, as the complete MDD must be loaded.

Now we briefly discuss the performance of the export and retrieval functionality of
the new tertiary storage version of RasDaMan. The export of data sets to tertiary stor-
age media is very fast because the data sets just have to be written to the virtual file
system of the HSM-System. This means storing data sets on the hard disk cache of the
HSM-System. The migration of the data sets from the HSM cache to the tertiary stor-
age media does not concern the RasDaMan system. For the retrieval functionality
three cases must be distinguished. In the first case we assume that the data sets needed
are already held in the DMBS cache area of RasDaMan. This request operation is very
fast, because no import of data from the HSM-System has to be done. In the second
case the data sets required are held in the hard disk cache of the HSM-System. This is
quite likely because the size of the HSM cache is normally hundreds of GByte. In this
case the import of the data sets is as fast as the export of the data sets because the data
sets don’t have to be staged from the tertiary storage media. This access is about fac-
tor 1.8 to 3 slower compared to normal DMBS access (dependent on network traffic,
transfer rate, etc.). We assume for the third case that the data sets requested are not
held in the HSM cache. This means the HSM-System must first stage the data sets
needed from the tertiary storage media to the HSM cache and then the data sets are
transferred to the RasDaMan system. Compared with DBMS access we measured a
slowdown of factor 3 to 10 (dependent on tertiary storage device, transfer rate, etc.).

6 Conclusion and Future Work

The initial point of our development was that members of the ESTEDI project have large
volumes of multidimensional array data, generated by scientific simulations, which are
stored as files on tertiary storage media.

The main goal of our development was to realize a fast and efficient access to terti-
ary storage media and provide access functionality like retrieval of subsets as common
for DBMS since a long time. This means the request response time scale now with the
size of the query box, not with the size of MDD like the traditional case of the
ESTEDI partner. In our approach we use a multidimensional array DBMS for optimal
storage, retrieval and manipulation of large MDD. A major bottleneck of the commer-
cial multidimensional array DBMS RasDaMan is that it was originally not designed to
use tertiary storage media for storing hundreds of terabytes (up to petabytes). To han-
dle the data amounts stored on tertiary storage an interface was presented to connect

tertiary storage systems to the multidimensional array DBMS RasDaMan. Conse-
quently, we created a hierarchical storage support and management system for large-
scale multidimensional array DBMS, which is specifically designed and optimized
(using clustering and caching of Super-Tiles) for storing multidimensional array data
on tertiary storage media.

Future work will be the development of scheduling techniques for multidimensional
array data streamlined for Super-Tiles. Scheduling for tertiary storage media means
the optimization of the media read order. This optimization reduces expensive media
seek and exchange operations. The focus is on scheduling policies that process all
requests on a loaded medium before exchanging it in the loading station of the robotic
library. We can differ intra and inter query scheduling. Intra query scheduling will
optimize the request order within one query. Inter query scheduling can be done in
RasDaMan by examining the query queue. If the actual query needs Super-Tiles from
one MDD and a further query of the query queue also needs several Super-Tiles from
the same MDD, all needed Super-Tiles will be imported at the same time into the
RasDaMan cache area.

References
1. Active Knowledge GmbH: RasDaMan Query Language Guide version 5.0, Active Knowl-

edge GmbH, Munich 2001
2. Baumann P.: A Database Array Algebra for Spatio-Temporal Data and Beyond, Proc. of

the 4th Int. Workshop on Next Generation Information Technologies and Systems (NGITS),
p. 76-93, 1999

3. Baumann P.: Array Databases Meet Supercomputing Data – the ESTEDI Project, Internal
ESTEDI Report, 2000

4. Bernardo L. M., Nordberg H., Rotem D., Shoshani A.: Determining the Optimal File Size
on Tertiary Storage Systems Based on the Distribution of Query Sizes, Proc. of the 10th Int.
Conf. on Scientific and Statistical Database Management, p. 22-31, 1998

5. Chen L. T., Drach R., Keating M., Louis S., Rotem D., Shoshani A.: Efficient organization
and access of multi-dimensional datasets on tertiary storage, Information Systems, vol. 20,
no. 2, p. 155-183, 1995

6. Chen L. T., Rotem D., Shoshani A., Drach R.: Optimizing Tertiary Storage Organization
and Access for Spatio-Temporal Datasets, NASA Goddard Conf. on Mass Storage Systems,
1995

7. Furtado P. A., Baumann P.: Storage of Multidimensional Arrays Based on Arbitrary Tiling,
Proc. Of the ICDE'99, p. 480-489, 1999

8. Furtado P. A.: Storage Management of Multidimensional Arrays in Database Management
Systems, PhD Thesis of Technical University Munich, 1999

9. Gaede V., Günther O.: Multidimensional Access Methods, ACM Computing Surveys, vol.
30, no. 2, 1998

10. Johnson T., Miller E. L.: Performance Measurements of Tertiary Storage Devices, Proc. of
the 24th VLDB Conf., New York, USA, 1998

11. Reiner B.: Tertiary Storage Support for Multidimensional Data, VLDB Supercomputing
Databases Workshop, Rome, September 2001

12. Rigaux P., Scholl M., Voisard A.: Spatial Databases – with application to GIS, Academic
Press, 2002

13. Sarawagi S., Stonebraker M.: Efficient Organization of Large Multidimensional Arrays,
Proc. of Int. Conf. On Data Engineering, volume 10, p. 328-336, 1994

