
Intra-Query Parallelism for Multidimensional Array Data

Karl Hahn, Bernd Reiner

FORWISS – Bavarian Research Center for Knowledge Based Systems
Orleansstrasse 34, 81667 Munich, Germany
{hahnk, reiner}@forwiss.tu-muenchen.de

Abstract
Intra-query parallelism is a well-established
mechanism for achieving high performance
in (object-) relational database systems.
However, the methods have yet not been ap-
plied to the upcoming field of multidimen-
sional array databases. Specific properties of
multidimensional array data require the ad-
aptation of established methods but also new
parallel algorithms. This paper presents a
discussion of adapted and new techniques
for parallelizing queries in multidimensional
array database management systems. It
shows their implementation in the RasDa-
Man DBMS, the first DBMS for generic
multidimensional array data. The efficiency
of the techniques presented is briefly dis-
cussed.

1. Introduction
Arrays of arbitrary size and dimensionality appear in
a large variety of database application fields, e.g.,
medical imaging, geographic information systems,
scientific simulations, etc. Recently, the integration
of an application domain-independent, generic type
constructor for such Multidimensional Discrete Data
(MDD) into Database Management Systems
(DBMS) has received growing attention. Current
scientific contributions in this area mainly focus on
MDD algebra and specialized storage architectures
[1] [4].

Since MDD objects usually have a size of several
MB and more and, operations on these values can be
very complex, compared to scalar values, their effi-
cient evaluation becomes a critical factor for the
overall query response time. Beyond query optimi-
zation, parallel query processing is the most promis-

ing technique to speed up complex operations on
large data volumes.

This paper discusses the suitability of intra-query
parallelism concepts developed for relational DBMS
in array DBMS. Special properties of array data,
e.g., the size of a data object combined with expen-
sive cell operations require adapted algorithms for
parallel processing. Suitable concepts found in rela-
tional DBMS are already implemented and evaluated
in the RasDaMan Array DBMS.

2. Parallel Query Processing in Relational
DBMS vs. Array DBMS

2.1 Similarities and Differences

The data model of multidimensional array data can
be compared to the relational data model: relational
tuples consist of values for defined attributes; a rela-
tional table holds data of the same structure, i.e. tu-
ples. The logical objects of multidimensional array
data are MDD having a defined dimensionality, cell
type, and spatial domain and collections which hold
a set of MDD with the same structure. Hence, the
multidimensional query language and query tree can
be based on its relational counterpart. The Array
DBMS RasDaMan supports a declarative multidi-
mensional query language which is an extension of
standard SQL. Like in SQL, conditions can be
evaluated on data sets (where clause) and operations
can be applied to the resulting data (select clause).
The main difference is the complexity of the opera-
tions which in most cases leads to CPU-bound que-
ries. As the most complex relational operations are
sorting and join; typical operations on multidimen-
sional data are arithmetic operations (like computing
average or maximum and minimum values), 2-D
image conversion, edge detection, Fourier transfor-
mation, etc. Hence, unlike its relational counterpart,
the query tree is distributed in a relational-like part,

and several arithmetic-like parts. Therefore, parallel
query execution has to consider both sections of the
query tree. For the relational-like part (following the
well-known iterator concept) established methods of
parallel RDBMS can be adapted. The arithmetic-like
section of the query tree requires new parallel algo-
rithms which have to be developed and evaluated.

Evaluating parallel algorithms for array data we
have to consider that the data being processed is
quite different. A relational data object is typically
very small and has a simple structure. MDD typi-
cally have a size of up to several GB, arbitrary di-
mensionality and arbitrary (often recursively struc-
tured) cell types. Therefore, the transmission of in-
termediate results has proven to be a special chal-
lenge in the implementation.

2.2 Relational Parallel Algorithms for Array Data

Parallel query execution in RDBMS was a major
research issue of the last years [5] [7]. Parallel archi-
tectures (shared-nothing, -disc, -everything) [3],
various algorithms (data- and pipeline-, inter- and
intra-operator parallelism), and different execution
strategies (load balancing, data distribution, etc) [2]
[6] have been investigated. Some of these methods
suit very well to array data while others do not.

Using the Message Passing Interface (MPI) stan-
dard for the inter-process communication MPI, we
are independent of the parallel architecture.

Considering the special properties of array data
and typical queries on this data we conclude that
data parallelism is very well suited while pipeline
parallelism shows inherent problems. As a data ele-
ment typically is very large and the operations on it
are typically complex the data elements can be dis-
tributed to the processes dynamically at query
execution time. Unlike the relational data parallelism
where a data distribution strategy is chosen in ad-
vance, the next data element can here be requested
by each process on demand. Hence, data skew is
avoided and load balancing is assured.

Pipeline parallelism on the other hand will not
lead to an adequate speed-up. Transferring interme-
diate results between processes is much more expen-
sive for array data because of the data’s complexity.

2.3 New Methods for Very Large Data

The methods presented above were adapted from
relational parallelism, taking an MDD as a logical,
atomic data unit which was not split. Taking into
account that large multidimensional data is often

stored as a set of non-overlapping tiles (multidimen-
sional object of the same dimensionality, covering a
sub-area of the spatial domain) to assure good access
times when retrieving multidimensional sub-areas
we conclude that the operations on an MDD can also
be done in parallel by distributing this internal stor-
age unit of tiles.

Nevertheless, parallelizing an operation on one
single MDD requires the analysis of each operation.
Especially promising are two classes of operations,
namely induced operations which apply an operation
defined on the cell base type to a complete MDD
(e.g., summation of 2 integers induces summation of
2 MDD with an integer cell base type) and aggrega-
tion operations which aggregate an MDD to a single
value (e.g., average or summation of a complete
MDD). Furthermore, the set of tiles required by
processes are not always disjoint. An operation on
two (or more) MDD with different tiling (tiles of
different size and spatial domain) means that we
have to give one tile to more than one process be-
cause this tile overlaps more than one tile of the
other MDD.

Summarizing, this tile-based parallelism requires
more complex algorithms but it can cover a typical
class of multidimensional queries.

3. Results Achieved

3.1 Inter-MDD Parallelism

The parallel query execution described in section 2.2
was implemented and evaluated in the commercial
Array DBMS RasDaMan.

Fig. 1 illustrates the query tree which was
adapted to allow for parallel execution. The arithme-
tic-like parts of the query tree are only sketched in
the figure as ‘cond’ for the condition tree and ‘op’
for multidimensional operations to be applied on the
resulting MDD. Two pairs of send and receive nodes
have been inserted to encapsulate the inter-process
communication. Hence, the query tree is split in
three parts which will be executed by different proc-
esses: one process holds the client-server connection
and distributed the workload to the internal proc-
esses. The computational work (middle part of the
query tree) will be done by several processes, typi-
cally as many as we have CPUs (or computers in a
workstation cluster). As both, condition and opera-
tion of an MDD are done in one process, internal
cached multidimensional objects can be used. One
process called ‘tuple server’ manages the distribu-

tion of MDD to the processes. The MDD will be
allocated on demand.

α

σ

✕✕✕✕

C1 Cn

Op

...

Send

Recv

Send

Recv

Cond

MDD Tuple Server

Computational Work

Client-Server Interface

Fig. 1: Parallel query tree

This strategy ensures good speed-ups because it
minimizes the inter-process communication and en-
sures excellent load balancing.

3.2 Evaluation

As we have expected this straightforward algorithm
shows a very good performance (compared to the
original RasDaMan implementation supporting no
intra-query parallelism). So far we measured the
speed-up on different multiprocessor computer (2
and 4 CPUs). CPU-bound queries on collections
holding many MDD showed almost linear speed-
ups. Tests will be extended to workstation cluster
soon. At the moment we can not judge how the
transmission of MDD over a network will affect
query performance.

4. Future Work

4.1 Intra-MDD Parallelism

Research work of the coming months will concen-
trate on parallel execution of operations on a single
MDD (as discussed in section 2.3). This requires the
development of a tile distribution algorithm which
ensures that minimal data is transferred between
processes. Furthermore, each operation defined on
multidimensional data (in the RasDaMan query lan-
guage there are about 40 operations) has to be ana-
lyzed regarding the potential for parallel execution.

We do not expect intra-MDD parallelism to have
a similar good performance as inter-MDD parallel-
ism as data distribution and inter-process communi-
cation is much more complex. Nevertheless, this
parallelism covers an important class of queries, i.e.

a very complex operation on a single very large mul-
tidimensional object.

4.2 Parallel Dynamic Query Execution Control

The final goal for multidimensional intra-query par-
allelism is an execution control which chooses the
best parallelization strategy at run-time. As far as
possible the well-performing inter-object parallelism
should be used unless one single data object has to
be processed (this can also occur at the end of a
query when only one single MDD is left).

Additionally, if more processes are available than
MDD have to be processed, an intelligent combina-
tion of both parallelization strategies should be cho-
sen by the parallel query execution control.

5. References
1. Baumann, P., Furtado, P., Ritsch, R., Widmann, N.:

Geo/Environmental and Medical Data Management in the
RasDaMan System. In Proc. of the Int. Conf. on Very
Large Data Bases (VLDB), 1997

2. Bouganim, L., Florescu, D., Valduriez, P.: Dynamic Load
Balancing in Hierarchical Parallel Database Systems. In
Proc. of the Int. Conf. on Very Large Data Bases (VLDB),
1996

3. DeWitt, D.J., Gray, J.: Parallel Database Systems: The
Future of High Performance Database Systems, Communi-
cation of the ACM, Volume 35, 1992

4. Furtado, P.A., Baumann, P.: Storage of Multidimensional
Arrays Based on Arbitrary Tiling, Proc. of the ICDE, p.
480-489, 1999

5. Nippl, C., Mitschang, B.: TOPAZ: a Cost-Based, Rule-
Driven, Multi-Phase Parallelizer. In Proc. of the Int. Conf.
on Very Large Data Bases (VLDB), 1998

6. Rahm, E.: Dynamic Load Balancing in Parallel Database
Systems. In Proc. of EURO-PAR, 1996

7. Tamer Özsu, M., Valduriez, P.: Principles of Distributed
Database Systems, Second Edition. Prentice-Hall, 1999

6. Authors’ Refereed Publications
1. Hahn, K., Sapia C., Blaschka M.: Automatically Generat-

ing OLAP Schemata from Conceptual Graphical Models.
In Proc. of the 3rd Int. Workshop on Data Warehousing and
OLAP (DOLAP), 2000

2. Hahn, K., Reiner, B, Höfling, G., Baumann, P.: Parallel
Query Support for Multidimensional Data: Inter-object
Parallelism. To appear in the Proc. of the 13th Int. Conf. on
Database and Expert Systems Applications (DEXA), 2002

3. Reiner, B., Hahn, K., Höfling, G., Baumann, P.: Hierarchi-
cal Storage Support and Management for Large-Scale Mul-
tidimensional Array Database Management Systems. To
appear in the Proc. of the 13th Int. Conf. on Database and
Expert Systems Applications (DEXA), 2002

