Project LARGECELLS

Project Terminated (Duration: 01.09.10 - 31.08.14)


Bright future for electricity from plastic

Fossil fuels are becoming increasingly scarce. In order to reduce the levels of climate-impacting carbon dioxide, renewable sources of energy are widely required. Photovoltaics play a particularly crucial role here regarding production of electric power. The problems however are that the production of rigid, inorganic photovoltaic elements from pure silicon requires high amounts of energy and is also expensive. The use of toxic, cost-intensive or rare elements, such as gallium arsenide, cadmium telluride or a combination of copper, indium, gallium, sulphur and selenium in the manufacture of photovoltaic cells is problematic too.

Organic photovoltaics (OPV) is a viable alternative. This technology, which enables the conversion of solar energy using organic materials such as polymers, makes efficient use of resources along the whole chain from production and installation to recycling. Unlike the case with inorganic semi-conductors, electron-hole pairs are created in organic materials when exposed to light. These pairs of holes are first of all separated and removed from the electrodes. The “polymer (polymeric) photovoltaic cells” are printed onto a carrier material (in this instance, onto a plastic sheet) using a roll-to-roll process and then sealed. They can therefore be produced quickly, resourcefully and at a low cost. In addition, they are easy and flexible to use, features which make them perfectly suited to applications involving uneven surfaces.

However, the attribute of large-scale application hasn’t yet been successful due to its comparably low power conversion efficiency. Yet to be researched as well are the long-term stability and the mechanisms of degradation in polymer-based solar cells, which have up to now hampered their practical application or commercialization.

The LARGECELLS project aims to develop low-cost and eco-friendly OPV solutions that can be put to versatile and flexible use. But to do this, the efficiency and long-term stability of OPV technology has to be improved considerably and this is exactly what researchers are aiming for as part of the EU-funded project.

Seite drucken top
LARGECELLS